
Range-Based Set Reconciliation Without
Homomorphic Hashing

Aljoscha Meyer
Technical University Berlin

Email: research@aljoscha-meyer.de

Konstantin Scherer
Unaffiliated

Abstract—Range-based set reconciliation is a set reconciliation
algorithm whose complexity tradeoffs excel in settings where
nodes of limited computational capabilities reconcile sets with
a large number of possibly malicious peers, such as in as peer-
to-peer systems. Previous presentations of range-based reconcil-
iation have relied on non-standard cryptographic hash functions
with certain homomorphic properties. We remove this reliance
on non-standard hashing, allowing to use range-based reconcil-
iation with traditional hash functions such as the SHA family.
We argue that range-based reconciliation strictly outperforms
reconciliation based on merkle-search-trees, another algorithm
which was developed for peer-to-peer systems and which does not
require homomorphic hash functions. By eliminating the need
for homomorphic hashing from range-based reconciliation, we
effectively render merkle-search-tree reconciliation obsolete.

I. INTRODUCTION

The problem of set reconciliation asks two nodes holding a
set each to both efficiently obtain the union of the two sets.
There exist several probabilistic algorithms with different com-
plexity profiles; we focus on range-based set reconciliation
(RBSR) [1]. Prior presentations of RBSR rely on non-standard
homomorphic hash functions for efficient implementation. We
present an alternate implementation technique that can make
use of arbitrary hash functions.

In evaluating set reconciliation algorithms, there are several
criteria of interest. The most obvious ones are the number
of roundtrips and the number of transmitted bits. The latter
is typically not measured against the total size of the union,
but against the size of the symmetric difference of the two
reconciled sets. When reconciling large but similar sets, an
algorithm should send only small amounts of data.

While there are many algorithms optimizing for solely these
two complexity criteria, there are several other criteria that are
relevant in practice. Computing the messages that the nodes
are sending must be efficient (or at least feasible). When a
node updates its set, it must be able to efficiently update any
auxiliary datastructures it requires for running the protocol.

Beyond traditional complexity criteria, another important
criterium is censorship resistence: a malicious node should
be unable to generate sets such that two honest nodes that
attempt reconciliation of these two sets do not end up with the
union. Ideally, censorship resistence should be obtained while
maintaining universality: the most significant part of the com-
putations that a node must perform should be independent of

the other node’s set; this allows nodes to efficiently reconcile
with a large number of other nodes.

Two algorithms that factor in these additional criteria are
RBSR, and the MST1 reconciliation of Auvolat and Taı̈ani [2].
Both are recursive algorithms where the nodes transmit sets
of fingerprints of contiguous subranges which partition the
original set. When receiving a fingerprint that a node already
has, that node knows the corresponding subrange to be fully
reconciled. For mismatching subranges fingerprints, the node
partitions the subrange and sends fingerprints for each re-
sulting subsubrange in the next communication round. For
sufficiently small subranges, a node simply sends the items
directly, ending the recursion.

MST reconciliation is driven by the unique representation
of a node’s set as a particular data structure, the MST. When
a node splits a range, it may only split it into ranges such that
the set of items in the range is exactly the set of items stored
in a subtree of the node’s MST. The MST is a Merkle-tree,
and a fingerprint for a range is simply the label of the root
of the corresponding subtree. Thus, the recursive splitting is
guided by a pseudorandomly determined tree shape rather than
by optimal choices.

RBSR, in contrast, has the nodes perform optimal partition-
ing by splitting each range into subranges of equal sizes. This
guarantees a logarithmic number of communication rounds,
but comes at the cost of more complicated fingerprint compu-
tation — Merkle tree labels do not suffice, since ranges do not
necessarily correspond to subtrees. Fingerprint computation
still relies on maintaining a search tree that labels each vertex
with the fingerprint of its corresponding subtree (called a
monoid tree). The fingerprint function must further satisfy an
algebraic property: there must be an associative function that
computes the fingerprint of the union of two non-overlapping
ranges from their individual fingerprints. Given this function
and a monoid tree, the fingerprint of an arbitrary subrange can
be computed via a tree traversal that runs in time proportional
to the height of the tree. This requirement precludes usage of
conventional hash functions such as the SHA family.

Our main contribution stems from a single observation:
if the auxiliary tree structure belongs to a certain family
of history-independent search trees, then the tree traversal

1“MST” is short for “Merkle Search Tree”. MSTs are not arbitrary Merkle-
trees that are also search trees, but a particular kind of history-independent
data structure introduced by Auvolat and Taı̈ani.



developed for RBSR produces unique results even for non-
associative fingerprint functions. This gives us an alternate
family of fingerprinting schemes suitable for RBSR which
can make use of conventional hash functions. Conversely, we
can frame this result as augmenting MST-like reconciliation
with the ability to compute fingerprints for arbitrary ranges,
reducing the asymptotic worst-case complexity and the practi-
cal average-case complexity in the process. In both views, we
significantly improve a state-of-the-art, practically applicable
algorithm.

The remainder of this paper is structured as follows. We
review related work in Section II, and define our required
preliminaries in Section III. In Section IV, we define the
core principles behind non-homomorphic RBSR, precisely
characterize the data structures that can be used to define and
compute the fingerprints, and provide an optimized algorithm
for the computation. We conclude in Section V.

II. RELATED WORK

The two classic approaches to set reconciliation — char-
acteristic polynomial interpolation (CPI) [3] and invertable
bloom lookup tables (IBLTs) [4] — and their numerous
variants rigorously minimize communication complexity and
roundtrips at the cost of high computational loads.

Our work falls into a different family of reconciliation
work: approaches which reduce the computational complexity
below O(n) for nodes holding a set of size n by accepting a
logarithmic number of communication rounds.

The first of these approaches is partition reconciliation [5],
which organizes a set as a partition tree of subranges, and
precomputes CPI messages for each subrange in the tree. The
peers exchange these messages layer by layer; reconciliation
of each tree vertex succeeds when the size of the symmetric
difference between the peers’ items within a range falls below
a configurable threshold. Unfortunately, this approach is not
censorship-resistant, malicious actors can craft mismatching
sets for which the peers believe that reconciliation succeeded
without actually reconciling any differences. Furthermore, the
partition tree can become unbalanced over time, causing a
degenerate number of roundtrips.

MST-based reconciliation [2] partitions sets into a (particu-
lar, history-independent) tree of subranges, and precomputes a
label for each vertex that fingerprints the set stored in the sub-
tree. The peers exchange these labels layer by layer, using label
equality to determine when a range has been fully reconciled.
The tree structure is pseudo-randomized, so the average-case
complexity is worse than if a perfectly balanced tree could
be used. Further, malicious data sources can compute trees of
n items in O(n) time with high probability that degenerate
to a single, large array. For these degenerate trees, one peer
ends up sending its complete set, irrespective of how small
the symmetric difference might be.

Most crucially however, MST-based reconciliation is asym-
metric. One peer repeatedly sends the labels of its vertices
— one layer of the tree per communication round — and
the other peer passively responds which labels matched and

which differed. Our approach (just like traditional RBSR
based on homomorphic fingerprinting) has peers directly reply
with labels of their own. By having both peers actively
send labels, RBSR performs twice as many subdivisions per
communication round compared to MST-based reconciliation,
thus halving the number of roundtrips.

Range-based set reconciliation [1] also has the peers recur-
sively exchange fingerprints for subranges. Unlike MST-based
reconciliation, these subranges can be chosen arbitrarily, with
the optimal choice being splits into subranges of equal sizes
(assuming uniformly distributed differences between the sets).
This increases the burden on fingerprint computation; prior
presentations of RBSR require usage of homomorphic hash
functions for label computation to achieve computation times
of O(log(n)). Our approach to fingerprint computation lifts
this restriction, at the cost of increasing the local computation
times to O(n) for specific, maliciously crafted sets. Com-
munication complexity, roundtrips, and censorship resistance
remain immune to malicious input.

RBSR is the only algorithm we are aware of that can operate
with a static, well-known instantiation (the secure fingerprint-
ing function) while staying resistant to maliciously crafted or
modified data sets, both in terms of worst-case complexities
and in terms of censorship resistance. MST-reconciliation
can protect against malicious input only by randomizing the
tree construction for each reconciliation session, which would
cause an O(n) computational overhead per session. Similarly,
traditional reconciliation approaches such as CPI and IBLTs
require per-session randomization to remain secure against
adversarial data sets (which does not impact their complexities,
because they already require O(n) computation steps for each
session).

A more recent approach to set reconciliation proposes
rateless invertable bloom lookup tables (RIBLTs) [6], and
claims to combine sublinear computational complexities, com-
munication complexity and roundtrips comparable to com-
putationally more expensive approaches, and suitability for
adversarial settings. Their solution for adversarial settings is
to randomize a hash function per session, thus incurring full
computational overhead in every single session instead of a
single precomputation, thus still leaving RBSR as the only
algorithm to handle adversarial inputs without resorting to per-
session randomization.

More gravely, however, we disagree with their assessment
of the communication complexity of their algorithm. Their al-
gorithm consists of one peer streaming a conceptually infinite
sequence of coded symbols to the other peer. Once the other
peer has received enough symbols, it notifies the streamer
to stop. The expected length of the stream is linear in the
size of the symmetric difference. While this seems efficient
at first glance, there is a hidden factor: the latency between
sending the stop signal, and the streamer receiving it and
halting transmission. During the time between the receiver
decoding the difference and sending a stop signal, and the
arrival of the stop signal at the sender, the sender continues
transmitting. This overhead is completely unrelated to the size



of the symmetric difference. If the symmetric difference is
small, but the latency of the stop signal is high, the analysis
turns unfavourable very quickly.

A proper assessment of the RIBLT algorithm requires a
networking model that takes into account bandwidth and
latency. And it should be compared not against reconciliation
approaches designed for a different networking model, but
ones designed for the same model. Partition reconciliation, for
example, can easily be adapted to also use the stream-until-
stop-signal technique:

Classic partition reconciliation sends the messages for a
single layer of the partition tree, and then waits for a response
by the other peer. It could just as easily be adapted to con-
tinuously stream the messages of all vertices of the partition
tree, in layer-ordering, and stop once the other peer tells it
to. Similarly, both MST reconciliation and RBSR could have
both peers stream the fingerprints of the internal trees in layer-
ordering as well, and thin out the streams whenever a peer
receives a matching fingerprint from the other peer. It is these
variations that would have to be compared against the RI-
BLTs aproach, in an appropriate evaluation framework. Simply
declaring the RIBLT approach to be more efficient by ignoring
latency is incorrect, and actually diminishes the contribution
of the authors: the impact of the intricate and elegant rateless
IBLT is dwarfed by the comparatively primitive technique of
spamming data until receiving a stop signal.

III. PRELIMINARIES

We now introduce the precise definitions and notation we
use for some well-known concepts.

A. Trees

A tree over some universe U is either the empty tree, or a
pair of

- a finite sequence keys of elements of U , individually
denoted as keyi, and

- a sequence children of trees, containing exactly one
more element than keys, individually denoted as
childreni.

For any k ∈ N, k ≥ 2, a tree is called k-ary if it is the empty
tree, or if children has length at most k and all children are
also k-ary.

The set of items of a tree is the empty set if the tree is
the empty tree, or the union of all keys of the tree and the
items of its children. A tree over a totally ordered universe is
a search tree if it is the empty tree, or if it has l many keys
and

- the greatest item of childreni is strictly less than keyi
for all 0 ≤ i < l,

- the least item of childreni is strictly greater than keyi−1

for all 1 ≤ i ≤ l, and
- all its children are search trees.

B. Merkle Trees

A hash function is a function from the set of finite bitstrings
into the set of bitstrings of some length l. It is called pre-image

resistant if it is computationally infeasible to find an input that
maps to any given output. It is called collision-resistant, if it
is computationally infeasible to find two inuts that map to the
same output. It is called secure if it is both pre-image-resistant
and collision-resistant.

Let t be a search tree over the set of finite bitstrings
(ordered, say, lexicographically), and let h be a secure hash
function. Let empty label be the result of applying h to the
empty string. We then define a Merkle-tree as a search tree
together with a labeling function label that maps the empty
tree to empty label, and any non-empty tree of l many keys
to h(h(children0) · h(key0) · . . . · h(keyl−1) · h(childrenl)),
where · denotes concatenation of bitstrings.

This definition diverges from the classic Merkle-tree, which
is a binary tree that stores items only in its leaves [7].
Our variant is a k-ary generalization of the authenticated
search tree of Buldas, Laud, and Lipmaa[8]. At the end
of the day, the precise definition is less important than the
resulting properties: it must be computationally infeasible to
produce two non-equal trees with the same root label (collision
resistence), or any tree with an arbitrary given root label (pre-
image resistence).

C. History-Independence

The algorithms we discuss require the reconciling nodes
to represent equal sets as equal trees, in order to compute
matching hashes. To get a more formal grasp on the relation
between abstract data types and concrete representations, we
employ Pugh’s representation functions [9]: A representation
function is a function from some concrete data type σ to an
abstract data type τ .

Diverging from Pugh’s original definition, we define a
representation scheme for τ via σ as a surjective representation
function from σ to τ . That is, we require every possible
instance of τ to have at least one concrete representation in σ.
As an example, the search trees over a universe U represent
the abstract type of all finite subsets of U . The surjective
representation function to witness this claim maps each tree
to the set of its items.

We call a representation scheme history-independent if its
representation function is injective (and thus, bijective). The
bijection corresponds to the intuitive notion of a one-to-one
correspondence between data structures and represented data
that sits at the heart of other authors’ definitions of this concept
(unique representation [10], structural unicity [2], confluent
persistence [11], anti-persistence [12]).

History-independent set data structures which guarantee
access in logarithmic time must necessarily take superlog-
arithmic time for insertions and deletions [10]. In practice,
most history-independent data structures employ randomiza-
tion to achieve logarithmic time complexities for both ac-
cess and mutation with high probability only. Conveniently,
many randomized set data structures can be converted into
history-independent data structures by using the items as
sources of pseudorandomness. History-independent data struc-
tures in this category include treaps [13], skip-lists [14],



30 54 67

11 24 49 61 75 80 98

16 32 34 37 51 70 73 90

Fig. 1. An example Merkle-tree, highlighting the items in the range [41, 77).
None of the labels in the tree corresponds exactly to the items in the range.
Some subtrees are neither fully contained in nor fully outside the range.

8

2

3

4

1

3

2 4

Fig. 2. Two example Merkle-tree, both containing a subtree on the items
{2, 3, 4}. The subtrees have different shapes. History-independence does not
forbid this, it is too weak a property to state anything about subtrees.

zip-trees [15], zip-zip-trees [16], B-treaps [17], B-skip-
lists [18], randomized-block-search-trees [19], the external-
memory, history-independent B-tree and skip-list versions of
Bender et al. [20], skip-trees [21], dense skip-trees [22],
MSTs [2], prolly-trees [23], and G-trees [24].

IV. MERKLE-TREE-BASED FINGERPRINTING

In order to perform range-based set reconciliation, nodes
must efficiently compute fingerprints for any subranges of
their set. History-independent Merkle-trees suggest an obvious
definition for the fingerprint of each set: the root label of the
unique Merkle-tree for that set. The tricky part is being able
to efficiently compute that label for arbitrary subranges of a
given set; this is the main challenge we solve.

The basic idea is for nodes to always store the Merkle tree
of their set. When attempting to compute the fingerprint for a
subrange of the set, two main problems can prevent the reuse
of the precomputed labels in the Merkle tree: range boundaries
might pass through larger nodes (Fig. 1), and equal subsets
might be stored in mismatched tree shapes (Fig. 2).

To overcome these problems, we define the notion of
clamping a given tree down to a given range; intuitively, this
means considering the subtree that remains after ignoring all
items outside the range. After giving a formal definition of
clamping, we can define a tree traversal that computes the root
label of the result of any clamping application inside a larger
Merkle tree (without explicitly constructing the subtree); this
procedure solves the issue of inconvenient range boundaries
(Fig. 1), and is how nodes compute their fingerprint. Finally,
we can define families of trees in which all larger trees
clamp down to equal subtrees for equal ranges; this solves
the problem of mismatched tree shapes (Fig. 2), and ensures
that all nodes compute equal fingerprints for equal subsets.

A. Clamping a Search Tree

Let t be a search tree over some universe U , and let x, y ∈ U
with x < y. We now define how to clamp t to the range [x, y).
We say an item a is included in the range [x, y) if x ≤ a < y.

Intuitively, we wish to simply discard all items outside the
range (Fig. 3). Special care needs to be taken with vertices
that contain no keys within the range at all, to not disconnect
the tree (Fig. 4).

We write clamp(t, x, y) to denote the result of clamping the
tree t to the range [x, y).

If t is the empty tree, clamp(t, x, y) is the empty tree again.
For any non-empty tree t of l keys, let start be the least

index such that keystart ≥ x (or l if keyl−1 < x), and let
end be the greatest index such that keyend < y (or −1 if
key0 ≥ y).

If start > end, i.e., if no keyi of t is included in [x, y),
then clamp(t, x, y) := clamp(childrenstart, x, y). Intuitively,
we recurse in the one child that might contain items in the
range.

Otherwise, we have start ≤ end, i.e., t has at
least one key in the range. Then clamp(t, x, y) is the
tree whose keys are keystart, . . . , keyend, and whose
children are clamp(childrenstart, x, y), childrenstart+1,
. . . , childrenend, clamp(childrenend+1, x, y).

B. Clamping-Invariant Representation Schemes

We call a history-independent representation scheme for the
finite subsets of some totally ordered universe U via search
trees over U clamping-invariant if, for all trees t, u, and all
items x, y ∈ U with x < y, we have that clamp(t, x, y) =
clamp(u, x, y) if t and u contain the same items in the range
[x, y).

This definition precisely enables Merkle-trees for usage with
RBSR: when two peers store non-equal items in a range, their
clamped subtrees are non-equal and thus have different root
hashes. If they do store the same set in a range, their clamped
subtrees will be equal, and hence have equal root hashes.

Most tree-based, efficient, history-independent set datastruc-
tures are clamping-invariant. Intuitively, this is not surprising:
updates are efficient when modifications only have local effects
but leave most of the tree unchanged, and clamping-invariance
is a very specific expression of changes outside some area of
the tree leaving that area itself unaffected.

To prove that some history-independent data structure is
clamping-invariant, it suffices to show that the data structure
is closed under application of clamp: since the data structure
is history-independent, and clamping reduces any search tree
down to a tree representing the intersection of range and the set
of items in the starting tree, the resulting trees will always be
equal if they conform to the constraints of the data structure.

We give an exemplary proof for treaps. Treaps [13] (pseu-
dorandomly) assign to each item a numeric rank; the treap on
a set of items is the unique tree that is both a search tree for
the items and a heap for the ranks. We can show that clamp
preserves both the search tree property and the heap property
by induction on the height of the treap. For the empty treap



30 54 67

11 24 49 61 75 80 98

16 32 34 37 51 70 73 90

54 67

49 61 75

51 70 73

Fig. 3. An example of clamping a Merkle-tree to the range [41, 77). All items outside the range are discarded.

30 54 67

11 24 49 61 75 80 98

16 32 34 37 51 70 73 90

54 67

51 61 70 73

Fig. 4. An example of clamping a Merkle-tree to the range [50, 74). Simply discarding items would leave the tree disconnected, so the subtrees need to be
reattached closer to the root.

of height zero, clamp yields the empty tree again, which is
a treap. Otherwise, let t be a treap of height h. There are
two possible cases when applying clamp to t: if no key of
t is in the range, clamp is applied to a single subtree. That
subtree is a treap of height h− 1, so clamp yields a treap by
the induction hypothesis. If there are keys of t in the range,
clamp is applied to several children, each of which results
in a treap by the induction hypothesis. The maximum rank
of the roots of each of these treaps is bounded by the rank
of the original subtree, hence the heap property is preserved.
Similarly, all items in these treaps were items in the original
subtree, which are bounded by the parent keys; hence, the
search-tree property is preserved.

Zip-trees [15] are treaps with a tie-breaking rule for ranks.
This tie-breaking can also be considered as refining the order-
ing of ranks, so the argument for preserving the heap property
remains unchanged. Dense skip-trees [22], MSTs [2], and G-
trees [24] admit simple inductive proofs analogous to that for
treaps. The zip-zip-trees [16] are special cases of the G-trees,
hence are also clamping-invariant, and the skip-trees [21] are
special cases of MSTs.

Prolly-trees [23] are not clamping-invariant: their tree
shapes depend on applying a rolling hash function to runs of
consecutive items, and clamping items can change how many
items the rolling hash function is applied to, influencing the
required tree shape.

The remaining data structures listed in Section III-C are
sufficiently complex that we consider proofs of clamping-
invariance (or the finding of counterexamples) to be out of
scope.

C. Clamped Fingerprint Computation

We now give an algorithm that takes a search-Merkle-tree
t and a range [x, y) as arguments and returns the root label of
clamp(t, x, y). In the pseudocode, we write nil for the empty
tree, [] for the empty string, t.label for the (precomputed) label
of the root vertex of a non-empty tree t, t.keys[i] for the i-th

key of t, t.children[i] for the i-th child of t, and t.len for the
length of t.keys. Crucially, this algorithm does not need to
construct clamp(t, x, y) itself to do so. Instead, the algorithm
mimics the definition of clamp and only feeds those keys and
subtrees into the label computation that are not clamped away.

Reusing precomputed labels of subtrees that are known to
be unaffected by clamping is crucial for the efficiency of
the algorithm. Algorithm 1 provides a naive translation from
the definition of clamp into an algorithm. This algorithm is
inefficient, however: there are up to two recursive procedure
calls per step. In a binary tree that is fully included in the
range, the algorithm visits every single vertex. But we are
interested in a running time of O(log(n)), not O(n).

Fortunately, a relatively simple observation suffices to speed
up the algorithm: for all but one vertex that contains keys in
the range, one of the two recursive applications of clamp has
no effect. To see why, consider the first such vertex; this is
the one vertex where both recursive applications might result
in clamping off some items. Now consider the clamping of
the greater of the two clamped subtrees. We know all its
items to be greater than or equal to the lower boundary of
the range. For any vertex in that subtree that has keys in the
range, we thus know that clamping its least subtree leaves that
subtree unchanged. Analogously, clamping the greatest subtree
of descendents of the lesser of the two first clamped subtrees
has no effect either.

We can leverage this insight in clamped label computation
by passing two boolean flags to the algorithm, initially set
to ⊥. When the algorithm encounters its first vertex that has
keys in the range, it sets one of the flags to ⊤ in each of
its recursive applications. When a flag is ⊤, the algorithm
reads precomputed labels — rather than recursing — on
the corresponding end of the range. Algorithm 2 gives the
optimized procedure.

The first time the optimized algorithm encounters a vertex
with keys in the range, it performs two recursive calls. In all
other cases, it performs only a single recursive call for non-



Algorithm 1 Naively computing root labels of clamped
Merkle-trees.
Require: x < y, t ̸= nil

1: procedure CLAMPED LBL(t, x, y)
2: if t = nil then
3: return H([])
4: else
5: start← min({i : t.keys[i] ≥ x}, default t.len)
6: end← max({i : t.keys[i] < y}, default −1)
7: if start > end then
8: return CLAMPED LBL(t.children[start], x, y)
9: else

10: s← CLAMPED LBL(t.children[start], x, y)
11: s← s · H(t.keys[start])
12: for i = start+ 1; i ≤ end; i++ do
13: s← s · t.children[start+ i].label
14: s← s · H(t.keys[start+ i])
15: end for
16: s← s· CLAMPED LBL(

t.children[end+ 1], x, y
)

17: return H(s)
18: end if
19: end if
20: end procedure

empty trees. Hence, the number of function calls is upper-
bounded by twice the height of the tree. This puts the running
time and space complexity in O(log(n)) with high probability
(assuming a data structure whose height is logarithmic in n
with high probability).

V. CONCLUSION

We have described how to efficiently compute fingerprints
for arbitary ranges in a set when given a Merkle-tree represen-
tation of that set. This allows for efficient implementation of
range-based set reconciliation without relying on non-standard,
homomorphic hash functions. We have further argued that
this approach to reconciliation is strictly more efficient than
reconciliation based on the merkle-search-trees of Auvolat and
Taı̈ani.

We have characterized the families of data structures
that result in unique range-fingerprints as the history-
independent, clamping-invariant search trees. Most practically
useful history-independent set data structures fall into this
category.

Degenerate instances of these data structures affect the com-
plexity of fingerprint computation, but both the communication
complexity and the number of roundtrips in set reconciliation
remain unaffected. Range-based set reconciliation backed by
homomorphic fingerprint computations, in contrast, can use
self-balancing set data structures and is thus completely im-
pervious to malicious input data. It also affords nodes to freely
select their backing data structure. Weighing these advantages
against the overhead induced by homomorphic hashing is the

Algorithm 2 Efficiently computing root labels of clamped
Merkle-trees.
Require: x < y, t ̸= nil

1: procedure CLAMPED LBL(
t, x, y, skipLeast, skipGreatest

)
2: if t = nil then
3: return H([])
4: else
5: start← min({i : t.keys[i] ≥ x}, default t.len)
6: end← max({i : t.keys[i] < y}, default −1)
7: if start > end then
8: return CLAMPED LBL(

t.children[start], x, y,
skipLeast, skipGreatest,

)
9: else

10: if skipLeast = skipGreatest = ⊥ then
11: s←CLAMPED LBL(

t.children[start], x, y,⊤,⊤
)

12: else if skipLeast = skipGreatest = ⊤ then
13: s← t.children[start].label
14: else
15: s←CLAMPED LBL(

t.children[start], x, y,
skipLeast, skipGreatest

)
16: end if
17: s← s · H(t.keys[start])
18: for i = start+ 1; i ≤ end; i++ do
19: s← s · t.children[start+ i].label
20: s← s · H(t.keys[start+ i])
21: end for
22: if skipLeast = skipGreatest = ⊥ then
23: s←CLAMPED LBL(

t.children[end+ 1], x, y,⊤,⊤
)

24: else if skipGreatest = ⊥ then
25: s←CLAMPED LBL(

t.children[end+ 1], x, y,⊤,⊥
)

26: else
27: s← t.children[end+ 1].label
28: end if
29: return H(s)
30: end if
31: end if
32: end procedure



main decision that any system employing range-based set
reconciliation needs to make; neither option is strictly superior
to the other.

REFERENCES

[1] A. Meyer, “Range-based set reconciliation,” in 2023 42nd International
Symposium on Reliable Distributed Systems (SRDS). IEEE, 2023, pp.
59–69.

[2] A. Auvolat and F. Taı̈ani, “Merkle search trees: Efficient state-based
crdts in open networks,” in 2019 38th Symposium on Reliable Dis-
tributed Systems (SRDS). IEEE, 2019, pp. 221–22 109.

[3] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with
nearly optimal communication complexity,” IEEE Transactions on In-
formation Theory, vol. 49, no. 9, pp. 2213–2218, 2003.

[4] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the difference? efficient set reconciliation without prior context,” ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 218–
229, 2011.

[5] Y. Minsky and A. Trachtenberg, “Practical set reconciliation,” in 40th
Annual Allerton Conference on Communication, Control, and Comput-
ing, vol. 248. Citeseer, 2002.

[6] L. Yang, Y. Gilad, and M. Alizadeh, “Practical rateless set reconcilia-
tion,” in Proceedings of the ACM SIGCOMM 2024 Conference, 2024,
pp. 595–612.

[7] R. C. Merkle, “A certified digital signature,” in Conference on the Theory
and Application of Cryptology. Springer, 1989, pp. 218–238.

[8] A. Buldas, P. Laud, and H. Lipmaa, “Accountable certificate manage-
ment using undeniable attestations,” in Proceedings of the 7th ACM
Conference on Computer and Communications Security, 2000, pp. 9–
17.

[9] W. Pugh and T. Teitelbaum, “Incremental computation via function
caching,” in Proceedings of the 16th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, 1989, pp. 315–328.

[10] L. Snyder, “On uniquely represented data strauctures,” in 2013 IEEE
54th Annual Symposium on Foundations of Computer Science. Los
Alamitos, CA, USA: IEEE Computer Society, oct 1977, pp. 142–146.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/SFCS.
1977.22

[11] J. R. Driscoll, D. D. Sleator, and R. E. Tarjan, “Fully persistent lists with
catenation,” Journal of the ACM (JACM), vol. 41, no. 5, pp. 943–959,
1994.

[12] M. Naor and V. Teague, “Anti-persistence: History independent data
structures,” in Proceedings of the thirty-third annual ACM symposium
on Theory of computing, 2001, pp. 492–501.

[13] R. Seidel and C. R. Aragon, “Randomized search trees,” Algorithmica,
vol. 16, no. 4, pp. 464–497, 1996.

[14] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

[15] R. E. Tarjan, C. Levy, and S. Timmel, “Zip trees,” ACM Transactions
on Algorithms (TALG), vol. 17, no. 4, pp. 1–12, 2021.

[16] O. Gila, M. T. Goodrich, and R. E. Tarjan, “Zip-zip trees: Making zip
trees more balanced, biased, compact, or persistent,” in Algorithms and
Data Structures Symposium. Springer, 2023, pp. 474–492.

[17] D. Golovin, “B-treaps: A uniquely represented alternative to b-trees,” in
International Colloquium on Automata, Languages, and Programming.
Springer, 2009, pp. 487–499.

[18] ——, “The b-skip-list: A simpler uniquely represented alternative to
b-trees,” arXiv preprint arXiv:1005.0662, 2010.

[19] R. Safavi and M. P. Seybold, “B-treaps revised: Write efficient
randomized block search trees with high load,” arXiv preprint
arXiv:2303.04722, 2023.

[20] M. A. Bender, J. W. Berry, R. Johnson, T. M. Kroeger, S. McCauley,
C. A. Phillips, B. Simon, S. Singh, and D. Zage, “Anti-persistence on
persistent storage: History-independent sparse tables and dictionaries,”
in Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, 2016, pp. 289–302.

[21] X. Messeguer, “Skip trees, an alternative data structure to skip lists in a
concurrent approach,” RAIRO-Theoretical Informatics and Applications,
vol. 31, no. 3, pp. 251–269, 1997.

[22] M. Spiegel and P. F. Reynolds Jr, “The dense skip tree: A cache-
conscious randomized data structure,” 2009.

[23] A. Boodman, R. Weinstein, E. Arvidsson, C. Masone,
D. Willhite, and B. Kalman, “Prolly trees: Probabilistic b-trees,”
Documentation, Attic Labs, 2016, https://github.com/attic-labs/noms/
blob/master/doc/intro.md#prolly-trees-probabilistic-b-trees. [Online].
Available: https://github.com/attic-labs/noms/blob/master/doc/intro.md#
prolly-trees-probabilistic-b-trees

[24] C. Farmer and A. Meyer, “Geometric search trees,” 2023, https://g-trees.
github.io/g trees/. [Online]. Available: https://g-trees.github.io/g trees/

https://doi.ieeecomputersociety.org/10.1109/SFCS.1977.22
https://doi.ieeecomputersociety.org/10.1109/SFCS.1977.22
https://github.com/attic-labs/noms/blob/master/doc/intro.md#prolly-trees-probabilistic-b-trees
https://github.com/attic-labs/noms/blob/master/doc/intro.md#prolly-trees-probabilistic-b-trees
https://github.com/attic-labs/noms/blob/master/doc/intro.md#prolly-trees-probabilistic-b-trees
https://github.com/attic-labs/noms/blob/master/doc/intro.md#prolly-trees-probabilistic-b-trees
https://g-trees.github.io/g_trees/
https://g-trees.github.io/g_trees/
https://g-trees.github.io/g_trees/

	Introduction
	Related Work
	Preliminaries
	Trees
	Merkle Trees
	History-Independence

	Merkle-Tree-Based Fingerprinting
	Clamping a Search Tree
	Clamping-Invariant Representation Schemes
	Clamped Fingerprint Computation

	Conclusion
	References

