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Abstract
Many common programming tasks, such as networking, are

conceptually about lazily working with sequences of un-

known length. There are plenty of APIs to choose from

— stream and sink, reader and writer, iterator and oops-

missing-counterpart. But these APIs typically vary between

languages or libraries. Even within a single ecosystem, there

often are inconsistencies between the processing models the

different APIs induce.

We argue that a unified design is possible. We aim to

provide a starting point for future language and library de-

signers, as well as raise several interesting research questions

that arise from taking a principled look at lazy sequences.
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1 Introduction
When sequences of data become too large to fit into memory

at once, programs need to process them lazily. From the

humble iterator to asynchronous APIs for streams and sinks

with error handling and buffering, every language needs

libraries for working with lazy sequences.

For such a fundamental, conceptually simple, and language-

agnostic problem, one might expect a principled, unified so-

lution that programming language designers and library au-

thors can turn to and implement in their language of choice.

But the opposite is the case. Learning a new programming

language implies learning yet another, slightly (or not so

slightly) different set of APIs for working with sequences.

Even within a single language, there are often competing

libraries — appendix A lists some thirty popular Javascript

libraries alone.
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Starting from “Which abstraction is the best?”, we quickly

moved to “Is there a best abstraction?”, and then to the more

constructive “What would make an abstraction the best?”.

In this essay, we present our answers to these questions. In

a nutshell:

1. Abstractions for working with lazy sequences in the

wild are ad-hoc designs.

2. We propose a principled way of evaluating them.

3. No prior abstractions satisfy all evaluation criteria.

4. We develop abstractions that do.

5. Everybody everywhere should use our abstractions

without further reflection.

We further argue that common designs are needlessly

inconsistent.

To give a concrete example: in Rust, the (de-facto standard)

Stream API
1

for receiving data from an asynchronous data

source has no notion of irrecoverable errors. Meanwhile, the

Read API
2

for receiving many items from a data source with

a single function call has a notion of irrecoverable errors.

Items are hardcoded to individual bytes, however, and errors

are hardcoded to a general-purpose I/O error type. Thus, it

is neither possible to turn any Stream into a Reader, nor the

other way around.

Conceptually, these two APIs deal with the same issue:

lazily producing a sequence. Rust has language-level mecha-

nisms for expressing specialization of APIs and subtyping

relations between APIs. Yet each of these abstractions is

defined in isolation, with fundamentally different choices

of expressivity that make it impossible to fluidly convert

between them.

Additional issues arise when considering the opposite of

receiving data: sending data off to be processed somehow.

The asynchronous, single-item Sink3
is the conceptual anal-

ogon of the Stream API, yet it also supports irrecoverable

errors. On the other hand, while the Stream API has a syn-

chronous counterpart in the Iterator API
4
, there is no such

counterpart for Sinks.

Such a lack of consistency causes unnecessary education

efforts, forces programmers to adopt inefficient code (raw

bytes are not the only items for which bulk processing is

more efficient than individual processing), and introduces

1https://docs.rs/futures/0.3.30/futures/stream/trait.Stream.html
2https://doc.rust-lang.org/std/io/trait.Read.html
3https://docs.rs/futures/0.3.30/futures/sink/trait.Sink.html
4https://doc.rust-lang.org/std/iter/trait.Iterator.html
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frustratingly arbitrary barriers to expressing a conceptual

architecture of data flows and error handling as actual code.

Hence, the abstractions we propose emphasize consis-

tency, and they build on top of each other. While that should
sound boring and obvious, it apparently is not.

To keep the scope manageable, we restrict our focus to the

two simplemost ways of interacting with a (possibly infinite)

sequence: consuming a sequence item by item, or producing a

sequence item by item. Both modes of interaction are of great

practical interest, they correspond, for example, to reading

and writing bytes over a TCP connection. We do not consider

more complex settings such as random access in our main

treatment.

We assume a strictly evaluated language. This makes ex-

plicit the design elements that enable laziness.

1.1 Evaluating Sequence APIs
Equipped with a vague notion of wanting to “lazily consume

or produce sequences”, how can we do better than simply

trying to find a design that satisfies all use-cases we can

come up with? In mathematics, one would define a set of

criteria that a solution should satisfy, in a way that makes

no assumptions about any possible solutions themselves.

For example, a mathematician might want to work with

numbers “with no gaps in-between” (i.e., the real numbers).

They might formalize this intuitive notion as a minimal, infi-

nite, complete ordered field. Any candidate construction (say,

the Dedekind cuts of rational numbers), can now be objec-

tively measured against the requirements. As an added bonus,

it turns out that all constructions satisfying the abstract re-

quirements are isomorphic. Some constructions might be

more convenient than others in certain settings, but ulti-

mately, they are all interchangeable.

This approach of construction-independent axiomization

is the only way we can reasonably expect to bring clarity

to the proliferation of competing API designs for lazy se-

quences.

Sadly, we could not find an airtight mathematical for-

malism to capture our problem space. The criteria we now

present leave gaps that must be filled by argumentation

rather than proof, the API design still remains part art as

much as science. We nevertheless think that both our ap-

proach and our results are novel — and useful.

The criteria by which we shall evaluate lazy sequence

abstractions are minimality, symmetry, and expressivity.

Minimality asks that no aspect of the API design can be

expressed through other aspects of the design. Removing

any feature impacts what can be expressed.

Symmetry asks that reading and writing data should be

dual. The two intuitive notions of producing and consuming

a sequence item by item are fully symmetric and sit on the

same level of abstraction. Any API design that introduces

an imbalance between the two is either contaminated with

incidental complexity, or it lacks functionality for one of the

two access modes.

Expressivity asks that the API design is powerful enough

to get the job done, but also no more powerful than necessary.

This is by far the most vague of our criteria, because we

cannot simply equate more expressivity with a better design.

We can, however, draw on the theory of formal languages to

categorize the classes of sequences whose consumption of

production can be described by an API. Some of these classes

are more natural candidates than others.

Of these criteria, minimality is arguably the least contro-

versial. Symmetry turns out to be the one we generally find

the most neglected in the wild. Expressivity might have the

weakest definition, but turns out to be rather unproblematic:

real-world constraints on the APIs lead to a level of expres-

sivity that also has a convincing formal counterpart — the

𝜔-regular languages (see section 3.3 for details) — making us

quite confident about the appropriate level of expressivity.

To obtain a good indicator for an appropriate level of

expressivity, we examine the world of non-lazy sequences,

i.e., sequences that can be fully stored in memory.

1.2 Case Study: Strict Sequences
Representing sequences in memory can be done in such a

natural way that we have never seen any explicit discussion.

We shall assume a typical type system with product types

(denoted (𝑆,𝑇 )), sum types (denoted 𝑆+𝑇 ), and homogeneous

array types (denoted [𝑇 ]).
Let 𝑇 be a type, then 𝑇 is also the type of a sequence

of exactly one item of type 𝑇 . Now, let 𝑆 and 𝑇 be types

of sequences. Then (𝑆,𝑇 ) denotes the concatenations of se-

quences of type 𝑆 and sequences of type 𝑇 , 𝑆 + 𝑇 denotes

the sequences either of type 𝑆 or 𝑇 , and [𝑇 ] denotes the

concatenations of arbitrarily (but finitely) many sequences

of type𝑇 . None of this is particularly surprising, we basically

just stated that algebraic data types and array types allow

you to lay out data sequentially in memory.

Slightly more interesting is the blatant isomorphism to

regular expressions. Each of the “sequence combinators” cor-

responds to an operator to construct regular expressions; the

empty type and the unit type correspond to the neutral ele-

ments of the choice and concatenation operator respectively.

This is useful for making our expressivity requirement for

lazy sequence APIs more precise: if the natural representa-

tion of strict sequences admits exactly the regular languages,

then the regular languages are also the natural candidate

level of expressivity for lazy APIs.

Unlike strict sequences that have to fit into finite memory,

lazy sequences can be of infinite length. The natural gener-

alization of the regular languages to infinite strings are the

𝜔-regular languages. Hence, this is the level of expressivity

we want to see in lazy APIs.

The strict case also neatly validates the design goals of

minimality and symmetry. Removing any combinator leads

2
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to a strictly less expressive class of languages, and every

operator comes both with a way of building up values and

with a way of accessing values.

By generalizing the strict case to the lazy case, we can

make our requirement of expressivity more precise, lead-

ing us to our final set of requirements: We want APIs for

lazily producing or consuming sequences one item at a time,

such that there is a one-to-one mapping between API in-

stances and 𝜔-regular languages, no aspect of the APIs can

be removed without loosing this one-to-one mapping, and

there is full symmetry between consumption and production

of sequences. Still not entirely formal, but close enough to

meaningfully evaluate and design APIs.

2 Describing Abstractions
We now start by introducing a notation for API designs. In

the following, we use uppercase letters as type variables.

(𝑆,𝑇 ) denotes the product type of types 𝑆 and 𝑇 (intuitively,

the cartesian product of 𝑆 and𝑇 ), and () denotes the unit type

(intuitively, the type with only a single value). 𝑆 |𝑇 denotes

the sum type of 𝑆 and 𝑇 (intuitively, the disjoint union of 𝑆

and 𝑇 ), and ! denotes the empty type (the type that admits

no values). Finally, we write 𝑆 → 𝑇 for the type of (pure)

functions with an argument of type 𝑆 and a return value of

type 𝑇 . Note we take a purely functional approach here: a

function does not mutate its argument, it simply produces a

new value.

We specify an API as a list of named types (typically func-

tions). Each API can quantify type variables that can be used

in its function declarations
5
. As an example, consider the

following API:

API I t e r a t o r <P , I >

next : P −> ( I , P ) | ( )

This pseudo-type fragment states that in order to obtain a

concrete Iterator, one needs two types: a type 𝑃 (Producer)

and a type 𝐼 (Item). These types have to be related through

existence of a function next, which maps a producer to either

an item and and a new producer, or to a value that signifies

that no further items can be produced.

To consume this iterator, one would repeatedly call next
on the producer returned from the prior call of next, until a

call returns ().
A concrete example of such an iterator are the homoge-

nous arrays of 𝐼s as producers of items of type 𝐼s; next
returns () for the empty array, otherwise it returns the first

item in the array and the array obtained by removing the

first item.

This API is completely stateless, we never mutate any 𝑃 . In

an imperative programming language, one would typically

use a function that takes a reference to a 𝑃 and returns either

5
More formally, this is a notation for ad-hoc polymorphism [WB89] like

Haskell’s type classes, Java’s interfaces, or Rust’s traits.

an 𝐼 or (), and then make all implementors pinky-swear

to not invoke the function with a 𝑃 that has returned ()
previously.

We prefer the purely functional notation, because it can

express the pinky-swearing API contract on the type level.

But all our designs can easily be translated into an impera-

tive, stateful setting. The other way around, by converting

stateful references into input values and output values, we

can represent APIs from imperative languages in our nota-

tion. For example, this Iterator API captures the semantics

of commonly used iterator APIs such as those of Python
6

or

Rust
7
. It handily abstracts over the fact that Rust has actual

sum types, whereas Python signals the end of iteration with

an exception.

Lazy sequence abstractions often come up in the context of

asynchronous programming. Programming languages typ-

ically have an idiomatic approach to asynchronous func-

tions; most modern languages have them return a Future<T>
or Promise<T>, that is, a value that represents that some

value of type 𝑇 will become available in the future. Other

approaches include passing the code to process the result of

the asynchronous function as a continuation (often called

a callback), or concurrency via lightweight process abstrac-

tions.

We posit that there is little reason for the sequence ab-

stractions to differ between synchronous and asynchronous

settings. In most modern languages, the change to convert a

synchronous function signature to an asynchronous one is

purely mechanical. Hence, we will implicitly abstract over

asynchrony and not mention it in our API designs.

For completeness sake, we should mention that there also

are techniques for explicitly abstracting over asynchrony

and other effects via monadic effect management [Wad95].

To the readers already familiar with this technique, adjusting

our designs is not difficult. To everyone else — i.e., to the vast

majority of practicioners we would like to reach — obscuring

our presentation behind higher-kinded type constructors

poses an unnecessary barrier to access. Thus we keep the act

of abstraction implicit. We point the interested reader to a

fairly recent example of a monad for asynchrony [ZBL20], as

well as to the alternate formalism of asynchronous algebraic
effects [Lei17][AP21].

Another kind of effect that will come up later is that of

errors. Similar to how an asynchronous function is like a

regular function but might take its time, a fallible function

is like a regular function but might abort with an error. And

similar to how modern languages have their idioms for asyn-

chrony (often, async-await syntax), they also have idioms for

fallible computations (often, try-catch syntax). Unlike asyn-

chrony, error handling has some interesting implications for

6https://wiki.python.org/moin/Iterator
7https://doc.rust-lang.org/std/iter/trait.Iterator.html

3
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communication flows in the API designs, so we return to the

topic proper in section 3.2.

3 A Principled Design
We now derive APIs for producing and consuming sequences

one item at a time, guided by minimality, symmetry, and ex-

pressivity (section 3.1). The issue of error handling deserves

its own discussion (section 3.2). Finally, we argue that the

designs are indeed sufficiently symmetric and of appropriate

expressiveness (section 3.3) — while our arguments are not

fully formal, they are at least formalizable.

3.1 Deriving Our Design
To derive a principled design step by step, we start with

simplemost producer API: a producer that emits an infinite

stream of items of the same type.

API I n f i n i t e P r o d u c e r <P , I >

produce : P −> ( I , P )

An iterator, in contrast, expresses a finite stream of items,

by making the result of a sum type with a unit type option

to signal termination. This is not to say that you could not

implement infinite iterators, but the typing for those is un-

precise — a statically typed language forces programmers to

provide code for the end-of-iteration case, even though they

might now it will newer occur.

We can easily abstract over both finite and infinite produc-

ers through a simple realization: we can rewrite the produce
function of the InfiniteProducer as a sum with the empty

type, without changing the semantics at all (it is impossible

to provide an instance of the empty type, so the function

must always return another item when called):

API A l s o A n I n f i n i t e P r o d u c e r <P , I >

produce : P −> ( I , P ) | !

Now, the infinite producer and the finite iterator have the

exact same form, and we can introduce a type parameter for

the summand to express either:

API Producer <P , I , F>

produce : P −> ( I , P ) | F

Setting the type parameter F (for final item) to ! or ()
yields the infinite streams and the finite streams over a single

type of items, respectively.

Another natural choice for F are irrecoverable error types;

most APIs with this design designate the type parameter

as a type of errors explicitly. This denotation obscures how

the same abstraction can also represent iterators or infinite

streams, however.

Moreover, it obscures that F might be another producer

itself, with which to continue production. Through this use

of the API, we can effectively concatenate any producer

after any finite producer. This usage is the cornerstone of

achieving the expressivity of the 𝜔-regular languages, and

one we have not encountered in the wild at all.

To give a tangible example of how this degree of expres-

sivity can be useful, consider a networking protocol that

proceeds in stages: first a handshake for connection establish-

ment, followed by an exchange of key-value pairs that signify

the capabilities of an endpoint, followed by the application-

level message exchange. With an API parameterized over

arbitrary final values, you can implement each stage in a type-

safe way, and then concatenate the stages both in execution

and on the type-level. Traditional APIs force programmers

to either lump the different kinds of messages (handshake,

key-value pairs, application-level) into a single sum type, or

to forego helpful typing altogether and operate on the level

of bytes.

A symmetric consumer API should be one that can be

given either an item of type I — returning a new consumer

value to continue the process — or a final item of some type

F — without returning a consumer to continue with.

Ideally, we should be able to mechanically derive this API

as a dual of the producer API. A tempting option is to “flip

all arrows” and simply swap argument and return type of

the produce function:

API Recudorp <P , I , F>

ecudorp : ( ( I , P ) | F ) −> P

We can clean this up by splitting the function of a sum

type argument into two independent functions (the resulting

types are isomorphic), and giving more conventional names:

API NotQuiteConsumer <C , I , F>

consume : ( I , C ) −> C

c r e a t e : F −> C

Unfortunately, this does not give the kind of API we were

hoping for. The consume function is appropriate, but the

second function is not closing a consumer, but creates a

consumer. A straightforward dual construction gives too

strong of a reversal to yield an API suitable for practical use.

Hence, Instead of a fully dual construction, we instead

derive a consumer API in steps analogous to those for deriv-

ing the Producer API. We start again with the consumers

of infinite sequences and the consumers of finite sequences:

API I n f i n i t e C o n s u m e r <C , I >

consume : ( I , C ) −> C

API F in i teConsumer <C , I >

consume : ( I , C ) −> C

c l o s e : C −> C

We can again introduce a type parameter for the final

sequence item to unify the APIs; observe how using ! or

() for the parameter F in the following API yields results

isomorphic to the InfiniteConsumer and FiniteConsumer
APIs respectively:

4
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API Consumer <C , I , F>

consume : ( I , C ) −> C

c l o s e : ( F , C ) −> ( )

This API is fully symmetric to the Producer: the consumer

can consume exactly those sequences that a producer can

produce, by feeding the final item into close. It is rather

unusual in that we have never seen an API whose close
function takes an argument in the wild.

Another unusual aspect is the inability of a consumer

to report errors to its calling code. This is severe enough

of a departure from typical APIs to warrant a dedicated

discussion.

3.2 Communication Flow
The inability to emit errors appears to make our proposed

Consumer API unsuitable for network programming, for ex-

ample. The underlying characteristics of the design are more

general than just error reporting: code interacting with a

consumer can pass information to the consumer but can-

not obtain any information from the consumer. Observe that

conversely, code interacting with a producer can obtain infor-

mation from the producer but cannot pass any information

to the producer.

This rigorous a restriction on communication flows evokes

design choices such as the unidirectional communication

primitives of security-focussed micro-kernels like seL4 [MMB
+
13],

so there clearly is a place for such constrained APIs. But

the consumer API does not seem appropriate as a general-

purpose API.

Trying to add the missing communication flows raises

some interesting questions. Should consumer return the next

consumer and another piece of information, or the next con-

sumer or another piece of information? What about close
— should it be able to return extra information, or not? How

should symmetry be preserved — does the Producer API

require a stop function that lets the surrounding code com-

municate that (and why) produce will no longer be called?

Should produce itself take a piece of information as input?

Our fairly principled approach of aiming for minimal, sym-

metric, regular-languagy APIs provides no guidance here, as

these communication flows exist outside our semi-formalized

problem domain. Any choices we need to make are essen-

tially arbitrary.

We see two ways out of this problem. The simplemost

solution is acceptance. When a programmer wishes to write

data to a network through a consumer interface, they need

a corresponding producer to emit any feedback such as con-

nection failures. Considering that typical networking APIs

use the same error type for reading and writing data, this

doesn’t seem too far-fetched. Then again, the difficulties in

migrating from more typical APIs to this style of error han-

dling are hard to estimate. An argumentative essay like this

one cannot conclusively establish a result, we merely want to

raise that accepting a consumer API without error reporting

might be more feasible than it appears at first glance.

The other solution is to consider fallibility as an effect. Just

like the functions we use in our APIs might be asynchronous,

they might also be fallible. Different programming languages

could represent this in different ways: some could use ex-

ceptions, others could consistently use a Result type (a sum

type of either the actual value of interest or an error value)

— the latter is a simple and classic example of monadic effect

handling. We can keep using the same notation as before,

but consider every function as possibly fallible.

Nevertheless, it is instructive to look at the APIs that result

from adding explicit error return options (of some type 𝐸) to

all functions:

API F a l l i b l e C o n s u m e r <C , I , F , E>

consume : ( I , C ) −> C | E

c l o s e : ( F , C ) −> ( ) | E

API F a l l i b l e P r o d u c e r <P , I , F , E>

produce : P −> ( I , P ) | F | E

The APIs look quite asymmetric suddenly, because the

FallibleProducer does not mirror the communication flow

of the consumer, as that would require functions that take 𝐸s

as arguments. Further, the return type of produce appears

to violate minimality, as 𝐸 and 𝐹 could be combined into a

single type parameter in principle. This demonstrates that

the perspective of errors as effects is crucial to meaningfully

evaluating sequence APIs — both ours, and those in the wild.

We will continue our discussion with the raw Producer
and Consumer APIs, and leave it to the reader to decide

whether their functions should be fallible (and/or asynchro-

nous, for that matter), or not.

3.3 Evaluating Our Design
Are our Producer and Consumer APIs minimal, symmetric,

and expressive on the level of (𝜔-) regular languages?

API Producer <P , I , F>

produce : P −> ( I , P ) | F

API Consumer <C , I , F>

consume : ( I , C ) −> C

c l o s e : ( F , C ) −> ( )

Symmetry is not immediately apparent; there is no obvi-

ous sense in which the two APIs are dual. We derived the

APIs in analogous steps, but that is not an inherent property.

And they even have a different number of functions!

Still, we can make a solid argument based on the observa-

tion that the APIs compose in a satisfying way.

Composing a producer with a consumer amounts to piping

the data that the producer produces into the consumer:

5
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Require: 𝑃,𝐶, 𝐼, 𝐹 are types such that Producer<P, I, F>
and Consumer<C, I, F>
procedure pipe(𝑝 : 𝑃 , 𝑐 : 𝐶): ()

loop
𝑥 ← produce(𝑝)
if 𝑥 is of type 𝐹 then

close(𝑥, 𝑐)

return ()
else

𝑐 ← consume(𝑥 .0)
𝑝 ← 𝑥 .1

end if
end loop

end procedure
The pipe function returns the unit type. On a purely ab-

stract level, composing to the unit type evokes the concept

of an element and its inverse composing to an identity el-

ement. This seems as strong a formal notion of symmetry

(without actually formalizing things) we can hope for, aside

from immediate duality.

The close function taking an argument nicely mirrors the

produce function emitting a final argument. In particular, if 𝐹

is another producer, then the consumer can pipe it in its close
implementation into an inner consumer. The overall return

type is still () — the unassuming pipe function can handle

multi-stage processing pipelines wihout any modification.

We can make a similar compositional argument for com-

posing the other way around: it should be possible to create

a pair of a consumer and a producer such that the producer

produces everything that the consumer consumes (in the

same order, i.e., as an in-memory queue). Such a queue is,

in some vague sense, the neutral element of transformation

steps in a pipeline (we return to this concept in section 4.1).

Here, we see another benefit of the close function taking

an argument: we can map this argument directly to the final

value to be emitted by produce.

Having argued that our design is indeed symmetric in a

meaningful way, we turn to the question of expressivity. Our

core argument rests on the observation that each Producer
(or Consumer) defines a formal language over an alphabet of

atomic types. More precisely, a Producer<P, I, F> emits an

arbitrary number of repetitions of values of type 𝐼 , followed

by a single value of type 𝐹 . In more traditional notation of a

language as a set of strings, it denotes the set {𝐼 }∗ ◦ {𝐹 }.
Given this mapping from sequence APIs to languages,

which class of languages do our APIs describe? We claim they

— in concert with sums, products, and functions — describe

the union of the regular and the 𝜔-regular languages.

The 𝜔-regular languages over Σ are the sets of infinite

strings over Σ that are either a concatenation of infinitely

many words from the same regular language
8

over Σ (infinite
iteration), or the concatenation of a regular language and

an 𝜔-regular language over Σ, or a choice between finitely

many 𝜔-regular languages over Σ.

As already argued in section 1.2, sum types and prod-

uct tyes correspond to choice and concatenation of regular

expressions respectively. Unlike the strict case, we cannot

rely on homogeneous arrays to act as the counterpart to the

Kleene operator, but this is where the Producer API comes

in (everything applies analogously for the Consumer API):

a Producer<P, I, F> can produce an arbitrary number

of repetitions of Is, followed by a single F. In particular, a

Producer<P, I, ()> corresponds to the Kleene operator,

and a Producer<P, I, !> corresponds to infinite iteration.

Unfortunately, this simple perspective is not fully accu-

rate. Product types as concatenation are too powerful for us:

consider a product (𝑃1, 𝑃2), where 𝑃1 is a Producer<P, I,
!>. The corresponding language would be a concatenation

with an 𝜔-language on the left, but this is explicitly ruled

out by the definition of 𝜔-regular languages. Another facet

of the same problem is that the type (𝑆,𝑇 ) is not one that

describes first emitting an 𝑆 and then a𝑇 , as it presents both

simultaneously.

To solve this, we can restrict the set of well-formed se-

quence types we consider to pairs (𝑆, () → 𝑇 ) for (sums of)

non-repeated types 𝑆 and arbitrary types𝑇 , and Producer<P,
S, T> for repeated types 𝑆 . This removes the ability to ex-

press concatenations with an 𝜔-language as the left operand,

and introduces the required indirection to express “first 𝑆 ,

then𝑇 ” (remember that we assume our functions to abstract

over effects, so there might well be asynchronicity involved

in obtaining the 𝑇 after processing the 𝑆).

We shall not dwell on this subtlety in greater detail, be-

cause it does not affect our two main points: our API is

expressive enough to decribe regular (𝜔-) regular languages,

whereas a more traditional API without a dedicated type

for the final item is not expressive enough, resulting in an

unjustified reduction in expressive power compared to repre-

senting strict sequences in memory. In particular, traditional

APIs cannot express concatenation of two sequences with

different item types.

Finally, our designs are indeed minimal: removing any fea-

ture reduces expressivity, because all features are necessary

to obtain the correspondence to the (𝜔-) regular languages.

4 Working With Producers and Consumers
Having settled on designs for Producer and Consumer APIs,

we now turn to how they can or should should be used in

practice. We note a powerful pattern of composability in

8
We assume familiarity with regular languages, for an introduction

see [HU69], for example. Or do the sensible thing of searching for “regular

language” on Wikipedia.
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section 4.1, muse about language-level support in section 4.2,

before turning to matters of efficiency in section 4.3.

4.1 Conducers
In section 3.3, we briefly considered an in-memory queue:

a pair of a consumer and a producer such that the pro-

ducer emits exactly the item consumed by the consumer.

We can consider such a pair as a single value that imple-

ments both the Consumer and the Producer API; we shall

call such a value a naïve conducer (portmanteau of consumer

and producer). The naïveté will become apparent once we go

from intuitive notions of composability to actual implemen-

tation; for now we ask the reader to suspend some disbelieve

and let the concept guide us toward the more useful actual
conducers.

Naïve conducers make an appealing foundation for con-

structing and composing producers and consumers. You can

use a single naïve conducer definition to both obtain a new

producer from a producer or a new consumer from a con-

sumer. Consider the naïve queue conducer: composing a

producer with the naïve conducer yields a new producer

that buffers some number of items before emitting them.

Composing the naïve conducer with a consumer yields a

new consumer that buffers some number of items before

consuming them in the inner consumer.

This dual-purpose usage constitutes a tangible advantage

of being hellbent on symmetry. As a second example, con-

sider a naïve conducer constructed from some function of

type 𝑆 → 𝑇 that is a consumer for items of type 𝑆 and a

producer for items of type 𝑇 . This naïve map conducer can

both adapt the items emitted by a producer, or adapt the

items accepted by a consumer.

Naïve conducers need not preserve a one-to-one mapping

between consumed items and produced items. The common

tasks of encoding and decoding values for transport can be

captured elegantly by naïve conducers: a decoder consumes

items of some type 𝑆 (often, 𝑆 would be the type of bytes) and

occasionally produces an item of some type 𝑇 , an encoder
consumes items of some type𝑇 and produces many items of

some type 𝑆 .

Unfortunately, none of this actually works. In order to, for

example, compose a naïve conducer in front of a consumer,

the consume function of the resulting consumer would have

to first call the consume function of the naïve conducer. Then,

it would need to correctly guess how many times to call the

naïve conducer’s produce function, in order to feed the re-

sults to the inner consumer. A general-purpose composition

routine can neither know how many items the inner con-

sumer expects, nor how many items the naïve conducer can

produce at any point in time.

One obvious solution is to explicitly manage metadata

about which functions can and should be called at runtime,

but this creates computational overhead. Another simple

solution is to restrict naïve conducer to producing exactly

one item per item they consume, but this severely restricts

expressivity — in particular, it prohibits encoders and de-

coders.

Toward a zero-overhead, expressive solution, we temporar-

ily abandon the dual-usage intuition behind naïve conducers,

and examine consumers and producers separately. We de-

fine a consumer adapter as a function that maps an arbitrary

consumer to another consumer, and a producer adapter as

a function that maps an arbitrary producer to another pro-

ducer.

These adapters can implement the same functionality as

naïve conducers, but in a way that actually works. Con-

sider, for example, a consumer adapter for encoding items

of type 𝑆 to many items of type 𝑇 . The consumer adapter

can produce a consumer that consumes an item of type 𝑆 ,

computes the encoding, and calls the consume function of

the inner consumer once for each 𝑇 of the encoding. The

corresponding producer adapter, when asked to produce a

value of type𝑇 , asks the wrapped producer for value of type

𝑆 , and computes the encoding. It then returns the first 𝑇 of

the encoding and buffers the remaining encoding, to be ad-

mitted on subsequent calls to produce. Only when the buffer

has become empty does it request another item from the

wrapped producer.

There is a large amount of overlap and symmetry between

the encoding consumer adapter and the encoding producer

adapter, note how both use the same procedure for the ac-

tual encoding, and both need to buffer the result in between

subsequent calls to the wrapped consumer or producer re-

spectively. We call a pair of consumer and producer adapters

that implements a naïve conducer an (actual) conducer.
While such conducers are an interesting tool to reason

about working with lazy sequences, they do not provide an

immediate software engineering benefit: the two adapters

need to be implemented independently. In the spirit of full

symmetry, we now have to duplicate all implementation

efforts.

To improve on this, we next take a look at how program-

ming language syntax (or macros) can make it possible to

write a single definition that then yields both adapters of a

conducer. To do so, we first need to investigate dedicated

syntax for producers and consumers separately.

4.2 Syntax Considerations
Many programming languages offer generator syntax for

creating iterators, and for loops for consuming iterators. A

language designed with our APIs in mind could provide more

powerful syntax.

Generators
9

provide dedicated syntax for creating produc-

ers, with yield emitting repeated items and return emitting

the final value. As an example, the following pseudo-code

emits the numbers from zero to nine and then the final string

9https://peps.python.org/pep-0255/
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“hi”. We use atypical choices of keywords (producer in-

stead of generator, produce instead of yield, and produce
final instead of return) to be obnoxiously explicit about

the intended semantics, and to prepare for a symmtric con-

sumer design:

p roduce r

i = 0

while i < 10

produce i

produce f i n a l " h i "

We are not aware of any language that provides a sym-

metric construction for creating consumers. Dreaming up

an initial symmetric design seems straightfoward enough:

consumer

x = consume

y = consume

u n t i l consume f i n a l z

doSomething ( x + y + z )

This design does leave open some questions: what if the

consume function of the created consumer is called more

often then there are consume keywords in the main con-

sumer body? And should it always be valid to jump to the

until consume final block, or only at the end of the main

consumer body?

Since the basic consumer design allows no communica-

tion to the calling code, a simple solution to the problem of

too many consume calls is to implicitly wrap the main con-

sumer body in a loop. In a setting with fallible consumers,

a consumer that wants to limit the number of possible calls

to consume can simply add an extra consume expression and

throw from there:

consumer

x = consume

y = consume

_ = consume

throw " too ␣ much ␣ i n f o r m a t i o n "

u n t i l consume f i n a l z

doSomething ( x + y + z )

To allow for control about what to do when close is called

depending on the current state of the consumer, the naïve

until consume final can be replaced with a mechanism

that mimics try-catch blocks:

consumer

consumeblock

x = consume

u n t i l _

throw " too ␣ l i t t l e ␣ i n f o r m a t i o n "

consumeblock

y = consume

u n t i l z

doSomething ( x + y + z )

consumeblock

_ = consume

u n t i l _

throw " too ␣ much ␣ i n f o r m a t i o n "

Our syntax is deliberately painful: we do not claim that

these are the best design choices, we merely want to demon-

strate that providing a meaningful and useful consumer syn-

tax is indeed possible. And after extrapolating the logic that

leads to our API designs, designing generators into languages

without a corresponding consumer equivalent feels question-

able.

A particular usecase we want to highlight for explicit

(asynchronous) consumer syntax is that of implementing

asynchronous parsers. Typically this involves writing a state-

machine or otherwise putting a lot of manual work into en-

suring a parser that can suspend its execution when reaching

the temporary end of input and then resume once more in-

put becomes available. The consumer syntax allows writing

asynchronous parsers that look just like synchronous ones.

Assuming the questions around dedicated consumer syn-

tax have been solved, the next logical step is to combine

the consumer and producer keywords into a more power-

ful conducer language construct. As an example, we sketch

an encoder conducer for converting 16-bit integers into se-

quences (pairs) of 8-bit integers:

conducer

consumeblock

x = consume

produce x / 256

produce x % 256

u n t i l f

produce f i n a l f

From such a construct, both a consumer adapter and a pro-

ducer adapter can be generated. For the consumer adapter,

the consume expressions provide the entry points to the state

machine of the consume function, and each produce expres-

sion translates to a consume call of the wrapped consumer.

For the producer adapter, the produce expressions provide

the entry points to the state machine of the produce function,

and each consume expression translates to a produce call of

the wrapped producer.

Finally, we want to draw a parallel to coroutines[MI09], as

implemented, for example, in Lua[Ier06]. In (that particular

brand of) coroutines, the yield expression in the coroutine

implementation not only yields a value to the outside world,

but it also evaluates to a value that is given as part of the ex-

pression that resumes the coroutine. We can see our conducer

syntax as a generalization of this pattern. Coroutines tie in-

coming and outgoing communication to the same points in

8
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the coroutine, marked by yield, whereas our design decou-

ples them via consume and produce. In fact, Lua’s coroutine

approach is equivalent to naïve conducers restricted to main-

taining a one-to-one correspondence between consumption

and production. Our syntax allows arbitrarily splitting the

communication. Hence, conducers generalize coroutines.

4.3 Buffering and Bulk Processing
We now turn to questions of efficiency. While consumers

and producers make for nice building blocks of programs

because they are conceptually simple to reason about, it is

inefficient in practice to process items one by one.

One problem of processing items one at a time is that

performing side effects is often expensive, for example, when

system calls are involved. Writing a file byte by byte with

individual system calls is orders of magnitude slower than

buffering bytes sequentially in memory and writing many

bytes with a single system call.

An easy solution is to allow consumers to buffer items

internally, leaving them the freedom to arbitrarily delay ac-

tual processing indefinitely to optimize for efficiency. When

writing to a consumer in order to perform side-effects, the

programmer needs a way to force the consumer to stop de-

laying, flush its buffer, and actually trigger the effects:

API BufferedConsumer <C , I , F>

consume : ( I , C ) −> C

c l o s e : ( F , C ) −> ( )

f l u s h : C −> C

The buffered consumer with a flush function is a staple of

real-world APIs. The analogous functionality for producers,

however, is one we have never encountered. The opposite of

flushing as much data as possible out of a buffer is slurping
as much data as possible into a buffer.

API B u f f e r e d P r o d u c e r <P , I , F>

produce : P −> ( I , P ) | F

s l u r p : P −> P

Unlike flushing a consumer, slurping a producer does not

serve to immediately trigger effectful production of items.

Still, there are arguments in favor of a slurp function on pro-

ducers that go beyond the consistency gains of maintaining

symmetry (although that alone would already suffice in our

opinion). Consider a producer that emits items from some

effectful source which might stop working at any moment

(e.g., a network connection). Slurping allows the program-

mer to pre-fetch data even though processing the available

data might be time-consuming and not yet finished, thus

reducing the probability that a later connection failure leads

to data loss.

System calls are not the only reason for processing data

in bulk. Simply copying consecutive bytes in memory from

one location to another is significantly more efficient than

copying each byte individually. Hence, many programming

languages offer APIs for producing or consuming many items

at a time by way of slices (a pointer paired with the number of

items stored consecutively in memory starting at the pointed-

to address).

A typical example of such readers (producers of many

bytes simultaneously) and writers (consumers of many bytes

simultaneously) are the Reader10
and Writer11

abstractions

of the Go language. To translate them into pseudo-types, we

write &r[T] for a slice of values of type T that may be read

but not written, and &w[T] for a slice of values of type T that

may be written but not read. The Go APIs then translate to

the following:

API Reader <R , I , E>

read : ( R , &w[ I ] ) −> ( R , Nat ) | E

API Wri ter <W, I , E>

w r i t e : (W, &r [ I ] ) −> (W, Nat ) | E

The read functionwrites (produces) some number of items

into a slice, and returns how many items were written. The

write function reads (consumes) some number of items from

a slice, and returns how many items were read. A return value

of zero typically indicates the end of the sequence
12

. We can

easily generalize to arbitrary final values of some type 𝐹 by

requiring the returned number to be non-zero and extending

the return sum type by a third
13

option of type 𝐹 .

Setting aside the interesting naming choices and the fact

that most langages unnecessarily specialize the item type to

that of 8-bit integers, these APIs display a perfect symmetry

that APIs for operating on individual items usually lack.

It is tempting to think of readers and writers as general-
izations of producers and consumers respectively, but that

viewpoint brings a problematic amount of freedom — which

parts should be generalized, and which parts should stay the

same? Consider, for example, our restrictions to exclusively

reading or writing from slices. This is more restrictive than

allowing arbitrary access to the slices, and, given the de-

faults of programming languages (no mainstream languages

support write-only pointers), the default choice of many is

unrestricted access to the slices. The Rust community has

had to put a lot of energy into dealing with the consequences

of such an oversight in its standard library
14

.

Instead, we propose to think about readers and writers

as optimization details: any read must be equivalent to a

10https://pkg.go.dev/io#Reader
11https://pkg.go.dev/io#Writer
12

In a synchronous setting, if no data is currently available but there might

be more data in the future, the functions should block instead of returning

zero. In an asynchronous setting, the functions should be parked to be

resumed at a later point.

13
Or a second option, if we consider the error case as an effect.

14
Rust allows for uninitialized memory, but reading from unitialized memory

is unsafe. See https://github.com/rust-lang/rfcs/blob/master/text/2930-read-
buf.md and https://blog.yoshuawuyts.com/uninit-read-write/ for details on

how this affects its reader API.

9
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series of zero or more calls to produce, and any write must

be equivalent to a series of zero or more calls to consume.
This viewpoint precisely defines the semantics of the reader

and writer APIs, and cleanly specifies answers to questions

that might otherwise be non-obvious: may read access the

contents of the slice? No. What should read or write do when

given an empty slice? Nothing. Is every (buffered) reader

or writer a (buffered) producer or consumer respectively?

Absolutely.

This last question is crucial: readers are subtypes of pro-

ducers, and writers are subtypes of consumers. If you take

away only one point from this essay, this is the one.

Readers and writers stem from file system abstractions,

the duality of reading and writing to or from a file make

their symmetry an obvious requirement. Streams and sinks

trace back to iterators, which arose from traversal of (poly-

morphic) data structures, hence making the genericity of

items an obvious requirement. If programming languages

had routinely linked the two abstractions by a subtyping

relation, we could have had fully symmetric, fully generic,

unified APIs for decades. Instead, these abstractions have

remained incomplete, and, consequently, interoperate badly.

One problem with the reader and writer APIs is that they

do not compose very nicely: in order to move data from a

reader to a writer, you need to specifically allocate an array

into which to first copy the data via read, and from which to

then copy the data via write. An alternate API choice without

this problem is to expose slices of internal buffers instead of

processing slices of external buffers:

API BulkProducer <P , I , F>

e x t e n d s B u f f e r e d P r o d u c e r <P , I , F>

p r o d u c e r _ s l o t s : ( P ) −> &r [ I ] | F

p r o c e s s _ p r o d u c e d : ( P , Nat ) −> P

API BulkConsumer <C , I , F>

e x t e n d s BufferedConsumer <C , I , F>

c o n s u m e r _ s l o t s : ( C ) −> &w[ I ]

process_consumed : ( P , Nat ) −> P

# To c l o s e , u s e t h e Bu f f e r e dCon sume r
# c l o s e f u n c t i o n

The consumer_slots function provides a slice into an inner

buffer of a BulkConsumer, into which the calling code can

write. To trigger actual processing of the written items, the

proces_consumed function notifies the consumer how many

items were written and tasks it to consume them. The seman-

tics of calling process_consumed with some argument 𝑛 must

be those of calling consume 𝑛 times, with the items written

to the slice returned by consumer_slots. The BulkProducer
API works analogously.

Whereas a writer API requires the data to be consumed
to be in an array, the bulk consumer is required to organize

its internal buffer as an array. In practice, things are most

efficient if both sides of the exchange store data consecutively

in memory, so we don’t expect this shift in responsibility to

make a difference to anyone who uses bulk processing for

efficiency reasons.

Our APIs are more low-level than the traditional reader

and writer APIs: The traditional read and write functions —

we propose to call them bulk_produce and bulk_consume —

can easily be implemented as helper functions that take a

slice and copy from or into (respectively) the slots exposed

by the bulk API.

Given such bulk_produce and bulk_consume functions,

there are now two semantically equivalent ways of piping a

bulk producer into a bulk consumer: pipe_bulk_consume uses

the producer_slots of the producer as the slice argument to

bulk_consume on the consumer, and pipe_bulk_produce uses

the consumer_slots of the consumer as the slice argument to

bulk_produce on the producer. Neither of these requires allo-

cation of an external buffer to facilitate the communication.

A final, interesting observation on this topic concerns

memory safety. In a language with a concept of uninitialized

memory that is acceptable to write to but not to read from, a

bulk consumer is free to expose a (write-only) slice of unini-

tialized memory in its consumer_slots function. Whenever

process_consumed is called thereafter, the consumer can as-

sume that the memory for the indicated number of items

has been initialized. If the calling code is faulty, this can lead

to undefined behavior, making the process_consumed func-

tion unsafe in the Rust sense of the word, i.e., it can trigger

undefined behavior when its contract is not upheld. There

is no such problem with the bulk producer API. Thankfully,

the bulk_consume helper function fully insulates from this

source of errors.

5 Summary
This concludes our main arguments and designs. Figure 1

lists our final APIs. Our main points of departure from cur-

rent mainstream designs are the following:

• Full symmetry between producers and consumers.

• Equivalent APIs irrespective of effects such as asyn-

chrony or fallability.

• A dedicated type for the last sequence item, drastically

increasing expressivity.

• Slurping producers.

• Bulk processing for items other than raw bytes.

• Subtyping relation between bulk processors and regu-

lar processors.

• Zero-copy bulk APIs.

• Dedicated consumer syntax as a counterpart to gen-

erators.

• Conducer syntax to automatically derive adapters for

both consumers and producers simultaneously.

10
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API Producer <P , I , F>

produce : P −> ( I , P ) | F

API B u f f e r e d P r o d u c e r <P , I , F>

e x t e n d s Producer <P , I , F>

s l u r p : P −> P

API BulkProducer <P , I , F>

e x t e n d s B u f f e r e d P r o d u c e r <P , I , F>

p r o d u c e r _ s l o t s : ( P ) −> &r [ I ] | F

p r o c e s s _ p r o d u c e d : ( P , Nat ) −> P

API Consumer <C , I , F>

consume : ( I , C ) −> C

c l o s e : ( F , C ) −> ( )

API BufferedConsumer <C , I , F>

e x t e n d s Consumer <C , I , F>

f l u s h : C −> C

API BulkConsumer <C , I , F>

e x t e n d s BufferedConsumer <C , I , F>

c o n s u m e r _ s l o t s : ( C ) −> &w[ I ]

process_consumed : ( P , Nat ) −> P

Figure 1. Our API designs in a single place.

6 Onward!
We have proposed and argued for some simple designs, but

there is still plenty of engineering and research left to be

done.

What is up with conducers? Is the introduction of dedi-

cated syntax really the best way of deriving consumer and
producer adapters from a single specification? Is there a nicer

API design that captures the same degree of composability

without requiring this split? If dedicated syntax is the way

to go, should there be dedicated syntax for bulk producers,

bulk consumers, and bulk conducers? What would it look

like? What about vectored I/O
15

?

Concerning the dedicated syntax, we took a lot of short-

cuts, not least of all the deliberately horrible syntax for con-

sumers. On the more formal side, what should be the proper

— say, denotational — semantics of a conducer syntactic ele-

ment be? Given such formal semantics, what is a translation

of the syntax into “normal” syntactic components of equiva-

lent semantics? Which “normal” constructs are particularly

helpful — coroutines, continuations? Can you elegantly avoid

such fancy constructs altogether?

Is the fact that conducers generalize coroutines a coin-

cidence, or do conducers deserve study as a control-flow

mechanism in their own right? Coroutines are as expressive

as one-shot continuations, but strictly less expressive than

general continuations [MI09]. Where do conducers fall in

this spectrum?

What is up with the symmetry between producers and

consumers? Is there a general, formal setting for express-

ing APIs with a general, precise notion of duality, in which

producers and consumers are dual in a formal sense? Did

we simply not find it yet, or is this impossible? For infinite,

homogeneous sequences, producers and consumers are actu-

ally dual. Why, and where exactly do things go wrong when

15https://en.wikipedia.org/wiki/Vectored_I/O

adding dedicated final elements or effects such as irrecover-

able errors?

How far can we take our unsatisfying substitutes for

proper duality — symmetry and inverse-like composition?

There is plenty of literature on proving iterators correct,

see [BHMS22] for a recent example. How much of such liter-

ature carries over to consumers, and how much has to be re-

developed from scratch? This question should serve as a pow-

erful motivation for finding a framing in which producers

and consumers are fully dual. Similar thoughts apply to opti-

mization techniques [KBPS17] or code synthesis[RML
+
12].

Session types [DCD10][HLV
+
16] aim to statically type

communication patterns in a way that guarantees, for exam-

ple, deadlock-freedom. Our explicit final item type allows

us to also accurately type certain classes of communication

patterns. How much overlap is there between our work and

session types, can they benefit from each other?

Regarding more direct concerns of software engineering,

which adaptors or combinators should make up the standard

toolbox for composing sequence APIs? Which algebraic laws

must they fulfil? What is a good technique for implementing

combinators only once and then automatically deriving bulk

versions? Conducers provide a good framing for unary com-

binators, but what about other combinators (say, a binary

concatenation combinator)?

Producers and consumers strictly limit where they inter-

act with a sequence. Aside from optimization details such

as functions for providing estimates of the minimum and

maximum number of items that can still be processed, the

most obvious extension of our APIs is that of random-access.

Readers and writers originate from the Unix notion of files,
and seeking in a file is a core concern of this perspective.

What do good APIs for seeking look like? Support for in-

finity sequences mandates relative offsets rather than abso-

lute indexing. Does this mean that all such generalizations

amount to Turing-machine APIs with a movable read/write

head? Should writing do overwrites exclusively, or is there

11
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design space for elastic bands that support insertion of new

items in-between older items (as well as proper deletion)?

Can and should these two modes be captured in the same

API, or do they require separate abstractions? What does a

lattice of (sub-) APIs look like that provides a more nuanced

yet practically useful version of “everything is a file”?

Another avenue for generalization is provided by the ex-

pressive power of the APIs. Our producers and consumers

correspond to the (𝜔-) regular languages. Are there elegant

APIs that capture the context-free languages? If you squint a

lot, (sets of) producer types look quite similar to left-regular

grammars — which should not be too surprising, given the

relation with regular languages. What is the formal version

of “squinting a lot”? Does it have an inverse? Which compu-

tational interpretation do you obtain by “unsquinting”, say,

the grammars in Chomsky normal form?

Yet another (arguably more practically relevant) gener-

alization is from sequences to other graphs. What are ap-

propriate APIs for consuming or producing trees? How do

different traversal orders (breadth-first, depth-first, etc) fac-

tor into the API designs? What about APIs for exploring only

a single path through a tree? Will there be a link between

APIs for tree processing and grammars of context-free lan-

guages? How far can we take sensible APIs for traversing

more complex graphs like DAGs or even arbitrary digraphs?

Finally, APIs with support for seeking in sequences or

more complex graphs open up the question of who performs

the seeking. In a traditional file system API for seeking in and

reading from a file, it is the user code that invokes the seeking.

But consider instead a texteditor that feeds changes to a text

buffer to some plugin. Here, the user code (i.e., the plugin)

reads data, but it does not control where in the sequence it

reads. The same kind of inverted seeking can happen for

more complex data structures: a text editor might update

a plugin about changes to a (higher-order) syntax tree, for

example. We are not aware of any principled investigation

into such APIs.

7 Further Reading
In this final section, we want to share some references that

could be of interest to anyone wishing to pursue those open

questions or to implement a library of sequence abstractions.

We have primarily presented our API designs by deriv-

ing them from first principles, instead of relating them to

existing designs. While there are plenty of languages and

libraries to choose from for documentation of existing APIs,

there is much less available material on the reasoning be-

hind those APIs. A notable exception are Oleg Kiselyov’s

iteratees [Kis12] and the resulting streamlined and well-

documented iterIO Haskell library
16

. Their expressivity

and rich algebraic structures are remarkable, as is the view-

point of iteratees as communicating sequential processes.

16https://hackage.haskell.org/package/iterIO-0.2.2/docs/Data-IterIO.html

Yet, the design differs significantly from ours, the inherent

asymmetry is striking: enumerators and iteratees are not

at all dual. Particularly interesting is the notion of Inums

in the iterIO library: they fulfil the same role as our naïve

conducers, while being completely asymmetric (and hence

avoiding the problems that require us to move from naïve to

actual conducers).

Kiselyov’s treasure trove of a website
17

contains several
18

collections
19

of writing
20

that pertain to sequence APIs. The

writing focuses almost exclusively on producers, with barely

a word on consumers or any notions of symmetry or duality.

We find it quite exciting that there is such a deep take on the

same material that reaches such different conclusions.

Functional reactive programming (FRP) is concerned with

APIs for building systems on event streams, a good overview

is given in [PBN16]. Whereas a sequence can be interpreted

as a value evolving over discrete timesteps, FRP tackles the

challenges of building abstractions (and efficient implemen-

tations) for values varying over a continuous notion of time.

Discussion of FRP invariably turns to restricting the treat-

ment of time to that of discrete event steps; this notion

of FRP is all about what we called producers, discussing

efficient implementation techniques, adapters, and combi-

nators. A prominent example of this brand of FRP is the

Elm language [CC13]. Appendix A contains a dozen popular

javascript libraries for such FRP.

FRP stands on the shoulders of stream processing. An

instructive survey by Stephens [Ste97] provides a good in-

troduction. Like us, Stephens laments the lack of a unified

theory underlying disparate API design efforts. The theory

that Stephens then proposes is a mathematical one rather

than one of API designs.

The implementation of iterators (and hence, producers

and the symmetric consumers) in imperative langages is typ-

ically a highly stateful business. In many cases, particularly

when no side-effects are involved, there exist purely func-

tional alternatives [Bak93]. Gibbons and Oliveira [GO09]

give a particularly thorough account that incorporates effect

handling in a functional setting. The reader who has not

spent years obtaining intimite familiarity with the Haskell

standard library should be warned that reading this paper is

a lot like reading the Silmarillion, in that a startling fraction

of words past the introduction are made-up.

In discussing algebraic datatypes together with homoge-

neous array types as a representation for strict sequences in

memory, we glossed over the fact that such representations

do not allow numeric indexing. Such representations are

also possible, even while maintaining static typing [KLS04].

The degree to which the strictly limited access provided by

17https://okmij.org/ftp/
18https://okmij.org/ftp/Haskell/Iteratee/index.html
19https://okmij.org/ftp/Streams.html
20https://okmij.org/ftp/Scheme/enumerators-callcc.html

12
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producers and consumers simplifies typing compared to a

random-access collection is remarkable.

We finish with a few pieces of literature on iterators that

arguably did not stand the test of time, but which provide

some creative input to the design space.

Interruptible Iterators [LKM06] provide an alternative to

generator syntax for implementing iterators. Interrupts aim

to allow for easy implementation of internal state changes

between or during iteration steps.

Segmented iterators [Aus00] address efficiency concerns

when working with segmented data structures such as hash

tables that consist of several, disjoint arrays of items.

Iterators in the swapping paradigm [WEHL94] tackle dif-

ficulties in formally verifying properties of iterators. They

reimagine iterator for programming laguages that do not

copy values by default, but swap them instead. This program-

ming model anticipates the linear-type-like move semantics

of languages like Rust.
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A Appendix: Javascript Libraries
This list of javaScript libraries for working with lazy se-

quences is intended to demonstrate that there is a clear need

for a solid design that people can fall back to rather than

reinventing ad-hoc wheels over and over. We list libraries

with at least 200 stars on Github, as of February 2024, found

by searching Gihub for “stream”, “observable”, and “reactive”.

• https://github.com/staltz/xstream
• https://github.com/mafintosh/streamx
• https://github.com/getify/monio
• https://github.com/getify/asynquence
• https://github.com/cyclejs/cyclejs
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• https://github.com/winterbe/streamjs
• https://github.com/winterbe/sequency
• https://github.com/pull-stream/pull-stream
• https://github.com/dionyziz/stream.js
• https://github.com/caolan/highland
• https://github.com/kefirjs/kefir
• https://github.com/baconjs/bacon.js
• https://github.com/cujojs/most
• https://github.com/callbag/callbag
• https://github.com/paldepind/flyd

The following libraries do not explicitly define streams,
but they do work with observables. Observables are an ab-

straction for values that (discretely) vary over time. For most

intents and purposes, this is isomorphic to the notion of a

stream.

• https://github.com/reactivex/rxjs
• https://github.com/tc39/proposal-observable
• https://github.com/zenparsing/zen-observable
• https://github.com/vobyjs/oby
• https://github.com/adamhaile/S

• https://github.com/luwes/sinuous
• https://github.com/mobxjs/mobx
• https://github.com/fynyky/reactor.js
• https://github.com/ds300/derivablejs
• https://github.com/elbywan/hyperactiv
• https://github.com/component/reactive
• https://github.com/mattbaker/Reactive.js

All these libraries exist in addition to language-level or

runtime-level APIs such as the following:

• Node JS Streams, and their evolution:

– streams0

– streams1

– streams2

– streams3

• WHATWG Streams

• ECMAScript Iterator

• ECMAScript AsyncIterator

Of these roughly 30 competing designs, the pull-streams

API is the only one for which we are aware of any academic

treatment [LH18].
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