
SoK: Authenticated Prefix Relations —
A Unified Perspective On Relative Time-Stamping and Append-Only Logs

Aljoscha Meyer
Technical University Berlin

Abstract
Secure relative timestamping and secure append-only logs are
two historically mostly independent lines of research, which
we show to be sides of the same coin — the authentication of
prefix relations. From this more general viewpoint, we derive
several complexity criteria not yet considered in previous
literature. We define transitive prefix authentication graphs,
a graph class that captures all hash-based timestamping and
log designs we know of. We survey existing schemes by
expressing them as transitive prefix authentication graphs,
which yields more compact definitions and more complete
evaluations than in the existing literature.

1 Introduction

Consider the problem of mapping any finite sequence to a
small digest, such that for any pair of a sequence and one
of its prefixes, their digests together with a small certificate
unforgeably certify that one is a prefix of the other. In other
words, consider the problem of finding an authenticated data
structure for the prefix relation on strings.

While we are not aware of any prior work that explicitly
takes this abstract viewpoint of the problem, there are sev-
eral publications that tackle it through the lens of a specific
use-case: secure logging [39] [11] [37], accountable shared
storage [25] [49], certificate transparency [20] [21] [23], or
data replication [33] [43].

Some fifteen years before most of these publications, inves-
tigation into secure relative timestamping – given two events,
give an unforgeable certificate that one happened before the
other – has yielded linking schemes [7] as a class of efficient
timestamping solutions, with several specific schemes being
proposed [17] [5] [8]. While solutions to relative timestamp-
ing need not necessarily yield solutions to prefix authenti-
cation in general, every linking scheme does provide prefix
authentication.

So there are quite a few disjoint publications working on
essentially the same problem, but with sparse interreferenc-
ing and the independent invention of various metaphorically

wheel-shaped devices. All these techniques are based on the
observation that if some object contains a secure hash of an-
other object, the prior must have been created after the latter.
Linking schemes are a well-defined class of such solutions,
other approaches only have ad-hoc descriptions and proofs of
correctness. Different publications also considered different
efficiency criteria, making it difficult to objectively compare
several approaches.

We provide systemization on several levels. First, we give a
precise definition of prefix authentication, and systematically
derive a set of efficiency criteria from this definition (sec-
tion 4). Second, we define a class of digraphs which general-
izes the linking schemes, can be used for prefix authentication,
and includes all hash-based prefix authentication schemes that
we are aware of (section 5). And third, we survey those prior
schemes, expressing them in our formalism and evaluating
them by our complexity criteria, yielding the most complete
comparison of such schemes so far (section 6), and revealing
some flaws in the current state of the art.

We round out our presentation with an overview of related
work (section 2), some mathematical preliminaries (section 3),
and a conclusion (section 7).

2 Related Work

Authenticated data structures [42] are data structures which al-
low to supplement query results with a small certificate of the
result’s validity; a verifier with access to only a small digest
of the current state of the data structure can check whether
the query was answered truthfully based on the certificate.

Secure (relative) timestamping asks for authenticated data
structures for a happened-before relation; given two events,
it should be possible to prove which occurred first (as op-
posed to both happening concurrently). Haber and Stornetta’s
foundational work [17] arranges events in a linked list, using
secure hashes as references. The path from an event to a prior
one certifies their happened-before relation.

A straightforward optimization is batching multiple events
into a single round by storing all events within a round in

1

ar
X

iv
:2

30
8.

13
83

6v
1

 [
cs

.C
R

]
 2

6
A

ug
 2

02
3

a Merkle tree, and linearly linking the roots of each round
rather than individual events [3]. This is fully analogous to
the blocks of a blockchain. Certificate sizes do not decrease
asymptotically however.

Buldas, Laud, Lipmaa, and Villemson provide the first
asymptotic improvement by adding additional hashes such
that there exist paths of logarithmic length between any pair
of events [7]. After Buldas and Laud finding the solution with
the shortest certificates in this class [5], Buldas, Lipmaa, and
Schoenmakers provide threaded authentication trees [8], an
even more efficient construction in the class of acyclic graphs
where the vertex for every event is reachable from all later
events. This is the class we refer to as linking schemes, and
upon which our generalization builds.

Their presentation and optimality proofs rely on a notion
of time-stamping rounds, the maximum number of events in
a single round features in their complexity analyses. We take
on a more general setting, the notion of rounds corresponds to
prefix authentication for sequences of bound length. Hence,
their lower bounds do not apply to our setting.

Laurie, Langley, Kasper, Messeri, and Stradling introduce
certificate transparency (CT) [20] [21] [23], a proposed In-
ternet standard for publicly logging information about the
activities of certificate authorities (CAs). Rather than detail-
ing the extensive background of public-key infrastructure
into which CT embeds itself, we refer to [24] Section 2. We
shall further abstract over optimization details of CT such
as signed certificate timestamps (SCTs) or maximum merge
delays. What remains is a so-called1 append-only log with
the dual-purpose of certifying both a prefix relation and set
membership. The CT data structure achieves the same cer-
tificate sizes as the threaded authentication trees, but is not a
linking scheme, which prompts our generalization.

Various publications propose alternatives to the original
CT design, reasons include adding support for certificate re-
vocation, strengthening the trust model, or mitigating privacy
concerns [22] [38] [18] [27] [2] [48] [24]. Other publica-
tions extend the concept of logging objects for accountabil-
ity reasons to application binaries [15] [31] [1] or arbitrary
data [14] [36]. None of them improve the underlying prefix
authentication scheme.

Several publications generalize (and formalize) the require-
ments behind CT as the combination of authenticating an
append-only property and supporting authenticated member-
ship queries: the logging scheme [13], the dynamic list com-

1These logs are, quite simply, not append-only logs. A log maintainer
cannot be prevented from creating several branches, this can merely be
detected after the fact. Upon detection, a log consumer must somehow deal
with the misbehavior, for example, by invalidating the log. But at that point,
the log has turned into an “append-only-until-a-full-deletion” log, which
is strictly more powerful than an append-only log. No matter how forks
are handled, the data structure is too powerful. Calling a data structure an
append-only log even though it is not is careless at best and misleading at
worst, especially in a security context. Hence, we exclusively talk about
prefix authentication from this point on.

mitment [9], or the append-only authenticated dictionary [44]
fall in this category. We are effectively “factoring out” the
prefix authentication; the other “factor” being authenticated
set data structures, which have already received extensive
treatment [30] [16] [6] [34] on their own. Usually so, our
definition requires neither a specific append operation nor
“append-only proofs”; the general notion of prefixes suffices.

Secure scuttlebutt [43] and hypercore [33] rely on authen-
ticated prefix relations for efficient event replication. Secure
scuttlebutt uses a linked list, hypercore has its own solution
which is almost identical to the log of CT.

Some approaches to tamper-evident logging also rely on
linked lists [39] [37]. In this context, Crosby and Wallach [11]
designed the first non-linking scheme approach to prefix au-
thentication that we know of. Their scheme precedes the CT
design by five years, but it is strictly more complex and ineffi-
cient.

Work on secure networked memory has also made use of
linked lists for prefix authentication [25] [49]. They speak of
fork-consistency: because forks (creation of strings neither
of which is a prefix of the other) cannot be authenticated,
a malicious author must consistently feed updates from the
same forks to the same data consumers to avoid detection.

Since a malicious data source can easily present such dif-
ferent views to several consumers, data consumers should
exchange information amongst each other to protect against
such split world attacks. Epidemic protocols [12] can be used
to this end [10] [32]. A complementary approach is to enforce
(efficient) cosigning, where a data source must present its up-
dates to a large number of other participants for approval [41].

Various authors argue that such reactive detection mech-
anism are insufficient, and propose a proactive approach
based on enforcing global consensus by moving events onto
a blockchain [45] [31] [1] [26] [19] [46]. Why an adversary
with enough power to perpetually prevent communication
between nodes that received incomparable views would be
unable keep those nodes in distinct bubbles that each produce
separate extensions of the blockchain is beyond us, but who
are we to argue against the magic powers of the blockchain?

While we restrict our attention to prefix authentication
schemes that exclusively rely on secure hashing, there also
exist approaches based on cryptographic accumulators [40].

3 Preliminaries

We write N0 for the natural numbers, and N for the nat-
ural numbers without 0. Let N ⊆ N0, and n ∈ N0, then
N≤n := {m ∈ N : m ≤ n} and N≥n := {m ∈ N : m ≥ n}. We
denote by bits(n) the unique set of natural numbers such that
∑k∈bits(n) 2k = n.

We assume basic understanding of cryptographic hash func-
tions [28], and a basic background in graph theory [47]. In
the following, u,v always denote vertices, U,X always denote
sets of vertices, G always denotes a graph on vertices V with

2

edges E. As we talk about directed graphs exclusively, all
graph terminology (graph, path, etc.) refers to directed con-
cepts. We only consider graphs without loops. Whenever we
apply a concept that is defined on sets of vertices to an indi-
vidual vertex, we mean the concept applied to the singleton
set containing that vertex.

A directed acyclic graph (DAG) is a graph without cycles.
The (open) out-neighborhood of U in a graph G is N+

G (U) :=
{v ∈ V \U : there is u ∈U such that (u,v) ∈ E}. A sink is a
vertex with an empty out-neighborhood, sinksG denotes the
sinks of G. reachG(v) denotes the set of all vertices u ∈ V(G)
such that there is a path from v to u in G, and reachG(U) :=⋃

u∈U reachG(u).
We use sequence and string synonymously and assume

both to always be finite. “·” denotes concatenation, ⪯ denotes
the prefix relation, for s ⪯ t, we call s a prefix of t and t an
extension of s. ε denotes the empty sequences. For a sequence
s, si denotes the i-th sequence item, with indexing startig at 1.

4 Prefix Authentication Schemes

We can now state what it means to authenticate a prefix rela-
tion.

Definition 1 (Prefix Authentication Scheme). A prefix au-
thentication scheme (PAS) for sequences over some universe
U is a triplet of algorithms digest, certify, and verify:

• digest : U∗ →{0,1}∗ maps any sequence s to some bit-
string digest(s), the digest of s.

• certify : U∗×U∗ ⇀ {0,1}∗ maps any pair of sequences
s ⪯ t to some bitstring certify(s, t), the prefix certificate
of s and t.

• verify takes bitstrings ds, ds and p and two natural num-
bers lens and lent , and returns true if there exist se-
quences s ⪯ t of length lens and lent respectively such
that ds = digest(s), ds = digest(t), and p = certify(s, t).
Furthermore, it must be computationally infeasible to
find inputs for verify that result in true otherwise.

From this definition, we can systematically derive the ef-
ficiency criteria by which to judge a PAS. Straightforward
criteria are the time and space complexity of the three func-
tions, as well as the sizes of digests and prefix certificates.
Previous work often ignores some of these, especially when
they are obvious in the context of that work. In comparing
several different prefix authentication approaches from fully
independent work, we consider it important to make all these
basic criteria explicit.

A less obvious pair of criteria derives from the question of
which portions of their input the algorithms actually utilize.
Both digest and certify receive full sequences as input. In
practice however, we are interested in schemes that compute

them from only a sublinear amount of information about the
sequence, say, in a peer-to-peer system where storing full
sequences would impose prohibitive storage overhead.

The first such criterium asks which information is required
to indefinitely keep appending items to a sequence and com-
pute the digests of all these extensions. We require a function
iterative_digest : I ×U →{0,1}∗× I that maps information
(of some type I) about a sequence s and a new item u to the
digest of s ·u and the information (again of type I) about s ·u.
Repeatedly calling this function allows computing the digest
for any sequence. Besides the computational complexity of
iterative_digest, we are interested in the size of the informa-
tion for sequences of length n.

For prefix certificate computation, we wish to map any
sequence to some (small) piece of information such that the
prefix certificate for any two sequences can be computed from
their two pieces of information. Again we are interested in
the cost of these computations, and the size of the information
depending on the length of the sequence. This generalizes
the notion of a time certificate [8], which is the primary fo-
cus of the timestamping literature, whereas this criterium is
rarely analyzed in the discussion of logs. We call the piece of
information about each sequence its positional certificate.

5 A Class of Solutions

We now develop a family of prefix authentication schemes
that generalizes over all hash-based secure timestamping and
logging schemes that we are aware of.

When some object contains a secure hash of another object,
any change to the latter would invalidate the prior. A classic
data structure to leverage this property is the Merkle tree [29],
a rooted tree which labels leaves with a secure hash of their
contained value, and which labels inner vertices with a secure
hash of the concatenation of the child labels.

We generalize the idea behind Merkle trees to arbitrary
DAGs. We label sinks via some function l : sinks(V) →
{0,1}k. For all non-sink vertices, we aggregate the labels
of their out-neighbors via some hash function h. In order
to deterministically apply h to sets (of out-neighbors of a
vertex), we assume there is some arbitrary but fixed total
order ≤ on V , and define how to convert any vertex set U
into a unique sequence seq(U) via seq(/0) := ε, seq(U) :=
min≤(U) · (U \min≤(U)). We then define

labell,h(v) :=

{
l(v) if v ∈ sinks(V),

h(seq(N+
G (v))) otherwise.

For binary out-trees, this yields exactly the Merkle tree con-
struction. We call a pair (G = (V,E), labell,h) a Merkle DAG.
If every maximal path from v intersects U , then labell,h(v)
can be computed from the labels of the vertices in U ; we say
that U label-determines v. If U label-determines every x ∈ X ,

3

we say that U label-determines X . Given U and v such that U
label-determines v, and some U-labeling p : U →{0,1}k, we
denote the expected label of v that can be computed from U
and p by labelph(v). Observe that functions p are practically
unique for any fixed labelph(v):

Proposition 1. Let (G = (V,E), labell,h) be a Merkle DAG,
let v∈V , and U ⊆V such that U label-determines v. Then it is
computationally infeasible to find a labeling p : U →{0,1}k

such that labelph(v) = labell,h(v) and p ̸= labell,h|dom(p).

Proof. Assume it was feasible to find p ̸= labell,h|dom(p) with
labelph(v) = labell,h(v). Then there must have existed a vertex
w with labelph(w) = labell,h(w) having an out-neighbor x with
labelph(x) ̸= labell,h(x). Hence two distinct inputs to h yielded
the same hash, contradicting the collision resistance of h.

Our prefix authentication schemes will use Merkle DAGs
whose sinks we each label with a secure hash of a sequence
item. We say a vertex set U is a commitment to a vertex set
X if X ⊆ reach(U). Changing the label of any vertex in X
changes the label of at least one vertex in U . The digests of
our schemes will be the labels of singleton commitments to
vertices labeled by hashes of sequence items.

We say a vertex set U is a tight commitment to a vertex set
X if U is a commitment to X and X label-determines U .

Our prefix certificates generalize the set membership proofs
of classic Merkle trees. Merkle trees offer compact set mem-
bership proofs by reconstructing the label of the root vertex
from the labels of the out-neighborhood of a path to a leaf.
The out-neighborhood of a union of such paths certifies mem-
bership of several leaves at once. We can generalize this to
arbitrary Merkle DAGs (see fig. 1 for an example):

Definition 2 (Subgraph Proof). Let (G = (V,E), labell,h) be
a Merkle DAG, let U ⊆ V , and let v ∈ V such that U ⊆
reachG(v). Let P be a family of paths starting in v such that
U ⊆ N+

G (P), and let p : N+
G (P) → {0,1}k, where {0,1}k is

the codomain of h.
We then call (labell,h(v), p) a potential subgraph proof of

U for v.
Observe that N+

G (P) label-determines v. We say
(labelh(v), p) is a (verified) subgraph proof if labelph(v) =
labell,h(v), and a refuted subgraph proof otherwise.

Proposition 2. Let (G = (V,E), labell,h) be a Merkle DAG,
and let v ∈ V . Then, by proposition 1, it is computationally
infeasible to find U and p such that (labell,h(v), p) is a verified
subgraph proof of U for v with p ̸= labell,h|dom(p).

Corollary 1. Let (G = (V,E), labell,h) be a Merkle DAG, let
v ∈V , let U ⊆V , and let (labell,h(v), p) be a subgraph proof
of U for v. If h is secure, then N+

G (dom(p)) is a subgraph of
G. In particular, G[U] is a subgraph of G, and U ⊆ reachG(v).

a

b

c

d

e f

g

h

i

j

Figure 1: An example subgraph proof of {a,b} for g.
P := {d,e, f ,g} consists of the vertices of two paths starting in
g whose out-neighborhoods together include {a,b}. The out-
neighborhood of P and its labels yield p, and it (necessarily)
label-determines g: the label of d can be computed from the
label of a; the labels of b and c suffice to compute the label of
e, which in turn determines the label of f ; together with the
label of h, we can compute the label of g. If this computed
label matches the label given with the subgraph proof, we can
be certain (up to hash collisions) that a and b relate to g in the
graph as expected and indeed have the labels claimed by p.

5.1 Linking Schemes
We now have the terminology to define the linking schemes,
a class of prefix authentication schemes based on Merkle
DAGs. We use secure hashes of sequence items to label the
sinks of some Merkle DAG in which the set of the sinks
that correspond to any prefix of the sequence has a common
ancestor vertex; the labels of the common ancestors serve as
digests, and subgraph proofs between the digest vertices serve
as prefix certificates.

First, we formalize the notion of mapping sequence items
to sinks:

Definition 3 (Sequence Graph). Let G be an acyclic graph
with sinks(G)⊇N, and let s be a sequence of length lens.

The sequence graph of s and G is the Merkle DAG
(G, labells,h) with

ls(sv) :=

{
h(v) if v ∈N<lens ,

h(ε) otherwise.

Next, we can describe the class of graphs that allows for
prefix authentication:

Definition 4 (Linking Scheme Graph). A graph G = (V,E)
is a linking scheme graph if G is acyclic, sinks(G) ⊇
N, and there exist functions digest_vertex : N → V , and
certificate_vertices : N×N → P (V) such that for all
lens, lent ∈N with lens < lent :

• digest_vertex(lens) is a tight commitment toN≤lens , and

• certificate_vertices(lens, lent) is a path starting in
digest_vertex(lent) such that digest_vertex(lens) ∈
N+

G (certificate_vertices(lens, lent)).

4

1 2 3 4 5 6 7 8 9 10 11

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Figure 2: An example linking scheme, together with a cer-
tificate for lens := 3 and lent := 7. p3 and p7 are the digest
vertices for 3 and 7 respectively. The path (p7, p4) is a (short-
est) path from p7 whose out-neighborhood contains p3, and
its out-neighborhood yields the prefix certificate.

Using a linking scheme graph as the underlying graph of
a Merkle DAG yields a prefix authentication scheme (fig. 2
gives an example):

Definition 5 (Linking Scheme). Let G = (V,E) be a linking
scheme graph, and let h be a secure hash function.

G and h define a linking scheme (digest,commit,certify)
using the following functions:

For strings s of length lens, let (G, labells,h) be the se-
quence graph of s and G. We then define digest(s) :=
labells,h(digest_vertex(lens)). Observe that this can be
computed from s alone as N≤lens label-determines
digest_vertex(lens).

For strings s ⪯ t of length lens and lent respectively,
let (G, labellt ,h) be the sequence graph of t and G. We
then define certify(s, t) as the bitstring obtained by sort-
ing N+

G (certificate_vertices(lens, lent)) according to ≤ and
concatenating the labels (in (G, labellt ,h)) of these vertices.
Finally, we define verify(ds,dt , p, lens, lent) to first parse p
into a labeling p′ of N+

G (certificate_vertices(lens, lent)) and
then return whether (dt , p′) is a verified subgraph proof of
digest_vertex(lens) for digest_vertex(lent).

Proposition 3. Every linking scheme is a prefix authentica-
tion scheme.

Proof. All functions have the required signatures. Let
s ⪯ t be sequences of length lens and lent respec-
tively, then verify(digest(s),digest(t),certify(s, t), lens, lent)
returns true by construction; and returning true for these
inputs implies s ⪯ t by corollary 1. Any other inputs that yield
true witness a hash collision by proposition 2.

This definition of linking schemes is adapted from Buldas
et al. [8] and captures the linear linking scheme [17], anti-
monotone schemes [7] [5], and the threaded authentication
trees [8]. This class of schemes does not however include
Crosby and Wallach’s secure logging scheme [11], trans-
parency logs [20], or hypercore [33], prompting our search
for a further generalization.

5.2 Transitive Prefix Authentication Schemes
The generalization to include these other schemes is simple2:
rather than giving subgraph proofs that some digest vertex is
reachable from another, we give subgraph proofs that some
set that label-determines a digest vertex is reachable from
another digest vertex.

Definition 6 (Transitive Prefix Authentication Graph). A
graph G = (V,E) is a transitive prefix authentication graph
(TPAG) if G is acyclic, sinks(G) ⊇ N, and there exist
functions digest_vertex : N → V , commit : N → P (V),
and certificate_vertices : N×N → P (V) such that for all
lens, lent ∈N with lens < lent :

• digest_vertex(lens) is a tight commitment toN≤lens ,

• commit(lens) label-determines digest_vertex(lens), and

• certificate_vertices(lens, lent) is a union of paths,
each starting in digest_vertex(lent), such that
commit(lens)⊆ N+

G (certificate_vertices(lens, lent)).

Using a TPAG as the underlying graph of a Merkle DAG
yields a prefix authentication scheme (fig. 3 gives an example).
Because the definition is similar to that of linking schemes,
we have typeset the differences in a bold font.

Definition 7 (Transitive Prefix Authentication Scheme). Let
G = (V,E) be a TPAG, and let h be a secure hash function.

G and h define a transitive prefix authentication scheme
(TPAS) (digest,commit,certify) using the following func-
tions:

For strings s of length lens, let (G, labells,h) be the se-
quence graph of s and G. We then define digest(s) :=
labells,h(digest_vertex(lens)). Observe that this can be
computed from s alone as N≤lens label-determines
digest_vertex(lens).

For strings s ⪯ t of length lens and lent respectively,
let (G, labellt ,h) be the sequence graph of t and G. We
then define certify(s, t) as the bitstring obtained by sort-
ing N+

G (certificate_vertices(lens, lent)) according to ≤ and
concatenating the labels (in (G, labellt ,h)) of these vertices.
Finally, we define verify(ds,dt , p, lens, lent) to first parse p
into a labeling p′ of N+

G (certificate_vertices(lens, lent)) and
then return whether (dt , p′) is a verified subgraph proof
of digest_vertex(lens) for digest_vertex(lent) and whether
labelp

′

h (digest_vertex(lens)) = ds.

Proposition 4. Every TPAS is a prefix authentication
scheme.

Proof. All functions have the required signatures. Let
s ⪯ t be sequences of length lens and lent respec-
tively, then verify(digest(s),digest(t),certify(s, t), lens, lent)

2Simple, that is, when starting from a characterization of linking schemes
that was specifically crafted to allow for this generalization.

5

1 2 3 4 5 6 7 8 9 10

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

q2 q4 q6 q8 q10

Figure 3: A TPAS, together with a certificate for lens := 4
and lent := 7. q4 and p7 are the digest vertices for 4 and 7
respectively. The path (p7, p5) is a (family of exactly one)
path from p7 whose out-neighborhood contains p3 and p4,
who together label-determine q4. Its out-neighborhood yields
the prefix certificate.

returns true by construction; and returning true for these
inputs implies s ⪯ t by corollary 1. Any other inputs that yield
true witness a hash collision by proposition 2 (when verify-
ing the subgraph proof) or by proposition 1 (when checking
that labelp

′

h (digest_vertex(lens)) = ds).

5.3 Efficiency Criteria

Because every TPAS stems from a TPAG, we can reason about
prefix authentication schemes while remaining solely in the
realm of unlabeled digraphs; the labelings are a deterministic
afterthought. Given the length k of each individual hash, we
can also reason about the complexity criteria of section 4 by
solely considering graph properties.

Since digests are labels of individual vertices, the digest
size of any sequence is k.

Worst-case and average prefix certificate sizes cor-
respond directly to the sizes of the out-neighborhood
of certificate_vertices(lens, lent): the prefix certificate is
labell,h|N+

G (certificate_vertices(lens,lent))
, which can be encoded

by fixing an ordering on V(G) in advance and simply
listing the labels of N+

G (certificate_vertices(lens, lent)) ac-
cording to that ordering. The space requirement is hence
|N+

G (certificate_vertices(lens, lent))| ∗ k.
Computing verify consists of reconstructing digest(lens)

from commit(lens) and digest(lent) from certify(lens, lent).
Reconstructing digest(lens) from commit(lens) requires time
proportional to the number of distinct edges on all paths from
digest(lens) to any vertices from commit(lens). Reconstruct-
ing digest(lent) from certify(lens, lent) requires time propor-
tional to the number of edges in the graph induced by the
closed neighborhood of certificate_vertices(lens, lent).

The complexity of computing digest(lens) and
certify(lens, lent) is less straightforward. Because
digest_vertex(lens) is a common ancestor of all i ≤ lens,
computing its label requires at least O(lens) time. In a

realistic setting, one would instead precompute and store the
labels of all all digest vertices, turning the computation into a
simple look-up. The additional storage cost of O(lens) space
does not exceed the cost for storing lens sequence items in
the first place. But when also precomputing the labels for all
vertices that can appear in any prefix certificate, the overall
space complexity might exceed O(lens).

We simplify the analysis by looking at the storage cost
for precomputing the labels of all vertices. Intuitively, we
expect efficient schemes to not have redundant vertices, so
this simplification should only be an overapproximation for
schemes that are of little practical interest to begin with.

In order to classify the storage cost per sequence item, we
define the graph G[lens] :=

⋃
i≤lens reach(digest_vertex(i))

of all vertices that are required to work with a sequence of
length lens. The number of labels that need to be precomputed
and stored because of the lens-th sequence item is then given
by |V(G[lens])\V(G[lens −1])|. We are both interested in
the worst-case for any lens and in the amortized case of aver-
aging over the first lens sequence items.

For iterative computation of digests, we require a func-
tion digest_pool : N→ V(G) such that digest_pool(lens −
1)∪ {lens} label-determines both digest(lens) and all ver-
tices in digest_pool(lens). Intuitively, the digest pool for
some lens consists of all the vertices in G[lens] whose la-
bel impacts the label of any future vertex, i.e., every ver-
tice in N+(G[lent]−G[lens])∩G[lens] for any lent > lens.
The labels of digest_pool(lens) then allow for indefinitely
appending new items to a sequence of length lens by adding
any newly created vertices whose labels will be used in
the future; we are interested in functions that minimize
|digest_pool(lens)|.

For computing prefix certificates from only
parts of full sequences, we consider func-
tions certificate_pool : N → V(G) such that
N+

G (certificate_pool(lens)) ∪ N+
G (certificate_pool(lent))

label-determines N+
G (certificate_vertices(lens, lent)).

This allows for computing certify(lens, lent) from the
(out-neighborhoods of the) certificate pools of lens and
lent . We are then interested in functions that minimize
|N+

G (certificate_pool(lens))|.

5.4 Secure Timestamping

Secure timestamping [17] asks to cryptographically certify
the happened-before relation on some totally-ordered set of
events. Prefix authentication does not immediately imply se-
cure timestamping, but the problems are related: if event num-
ber s happened before event number t, we can certify that the
sequence of the first s events is a prefix of the sequence of
the first t events. This only relates the digests of the event
sequences however, not the events themselves.

We can extend every TPAS to provide time stamping. We
define the identifier of the i− th item in some sequence as a

6

(deterministically selected) subgraph proof of its vertex for
digest_vertex(i). We call it an identifier because it identifies
a particular item as occuring at a particular position in a
particular sequence (and its extensions).

Let s be the sequence of the first lens events, and let t be
the sequence of the first lent events, with s ⪯ t. To certify that
event number lens happened before event number lent , simply
provide certify(s, t) together with the identifiers of lens and
lent . certify(s, t) certifies the happened-before relation of the
digests, and the identifiers tie the digests to the actual items.
Verification consists of verifying the certificate as well as the
two identifiers.

Hence, the worst-case and average size of the identifier for
any item at position n becomes another complexity parameter
of interest. Its exact value is k (the size of an individual digest)
times the number of vertices in the subgraph proof of {i} for
digest_vertex(i).

6 Prior Schemes

We now give definitions of timestamping and logging schemes
from the literature, expressed as TPASs. This serves as a
demonstration of the generality and applicability of TPASs, it
provides a survey of existing approaches, and it allows us to
apply our efficiency criteria to previous work.

Our definition of Merkle DAGs automatically incorporates
the notion of computing the labels along a path from a prefix
certificate rather than directly using those labels as the cer-
tificate, an optimization introduced by Buldas, Lipmaa, and
Schoenmakers. [8] after several prior schemes had already
been published. The improvement that their section 5.2 gives
over the antimonotone linking schemes [7] [5] is inherent to
our formulations of all approaches.

Our presentation of timestamping schemes differs signif-
icantly from their original presentation in that we do not
consider a setting of timestamping rounds. Working with
timestamping rounds effectively amounts to solving prefix au-
thentication for strings of bounded length. Once the maximal
string length is reached, the round concludes and a new round
begins for the next subsequence of bounded length.

For authentication across rounds, the rounds must them-
selves be maintained in a prefix-authenticating data structure.
This requires an awkward nesting of prefix authentication
schemes that is overall less efficient than authenticating the
full string without subdividing it into rounds.

Prefix authentication for strings of bounded length is an eas-
ier problem than prefix authentication for strings of arbitrary
length. Hence, we need to adapt the timestamping schemes to
the more general setting, and this adaptation results in worse
positional certificate sizes than the original publications re-
port. The original publications do not account for the cost
of inter-round authentication, which is why we do our own
complexity analyses and arrive at worse bounds.

1 2 3 4 5 6 7 8 9

p1 p2 p3 p4 p5 p6 p7 p8 p9

Figure 4: The linear linking scheme, highlighting
certificate_vertices(3,7) and certify(3,7).

This adaptation also means that the proofs of optimality
in the timestamping literature do not apply to our setting.
While we believe our adaptations are faithful, more efficient
solutions for round-less authentication can exist.

6.1 Trivial Schemes
The simplemost linking scheme is the linear scheme of [17].
Its underlying graph is a “Merkle linked-list” Glin:

Vlin := {pn : n ∈N}∪N,
Elin := {(pn+1, pn) : n ∈N}∪{(pn,n) : n ∈N},
Glin := (Vlin,Elin).

To use this graph as a linking scheme,
define digest_vertex(n) := pn, and define
certificate_vertices(lens, lent) as the shortest path from
digest_vertex(lent) to digest_vertex(lens) (see fig. 4 for a
depiction). We use the same definitions of digest_vertex and
certificate_vertices for all linking schemes in this section,
unless specified otherwise.

Prefix certificates are of linear size in lent − lens. Certifi-
cate pools are of linear size in lens, as they must contain
the full path from digest_vertex(lens) to digest_vertex(1):
certificate_pool(lens) := Glin[lens]. On the plus side, di-
gest pools are of constant size, with digest_pool(lens) :=
digest_vertex(lens).

The full linking scheme is the other trivial scheme, with
an edge from p j to pi for all i < j; the quadratic number of
edges makes it unsuitable for any practical use.

6.2 Skip List Schemes
A simple but suboptimal way of interpolating between the
two trivial schemes is to use a (contracted) deterministic skip
list [35]. In addition to the edges of Glin, also add an edge from
pn to pn−k if n is divisible by k. The certificate pool of n is the
out-neighborhood of the shortest path from 2⌈log2(n)⌉ to n and
from n to 1. The digest pool is the out-neighborhood of the
shortest path from n to 1. Figure 5 visualizes the construction.

This scheme is used by CHAINIAC [31], but it has pre-
fix certificates of superlogarithmic size. Consider the vertex
n := 2k. It has k out-neighbors, all of which must occur in
certificate_vertices(1,2k). The second vertex of the shortest

7

1 2 3 4 5 6 7 8 9 10

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p12 p16

Figure 5: The CHAINIAC scheme, highlighting
certificate_pool(5) and its out-neighborhood.

path from 2k to 1 is 2k−1, whose out-neighborhood contains
k−1 vertices. Iterating this argument yields a certificate size
of Σi≤ki ∈ O(k2) = O(log(n)2). While certificate pools have
logarithmic size, their out-neighborhoods do not.

Blibech and Gabillon [4] also propose a scheme based
on skip lists, but their construction relies on the notion of
timestamping rounds: unlike the timestamping schemes we
generalize next, their scheme gives dedicated treatment to the
last vertex of each timestamping round, and it can only pro-
vide prefix certificates for items whose timestamping rounds
have been concluded. Hence, it is not a prefix authentication
scheme according to our definition, as it is not applicable to
authenticating sequences of unbounded length.

6.3 Antimonotone Binary Schemes
The simple antimonotone binary linking scheme [7] achieves
logarithmic certificate pools by augmenting the linear scheme
with only one additional outgoing edge per vertex. The addi-
tional edge for vertex pn goes to p f2(n), with f2(n) defined as
follows:

f2(n) :=

{
n− (2k−1 +1) if n = 2k −1,k ∈N
n−2g(n) otherwise

g(n) :=

{
k if n = 2k −1,k ∈N
g(n− (2k−1 −1)) if 2k−1 −1 < n < 2k −1,k ∈N.

Observe that for all n < m we have that f2(n) ≥ f2(m),
hence the antimonotone in the name.

We denote the resulting graph as Gls2 := (Vlin,Elin ∪
{(pn, p f2(n)) : n ∈ N≥2}), fig. 6 shows an excerpt. For any
n, we say it belongs to generation ⌊log2(n)⌋. We say p2t+1−1
is the vertebra of generation t, and

⋃
k≤t{p2k+1−1} is the spine

of generation t.
Let n a number of generation t. Then, the union of the

shortest paths from the vertebra of t to pn, from pn to the
vertebra of t −1, and from that vertebra to p1 (the latter two
paths together form the shortest path from pn to p1) is a
certificate pool for n [7]. We proceed with a proof sketch for
the size of the corresponding positional certificates.

p1

1

p2

2

p3

3
p4

4

p5

5

p6

6

p7

7

p8

8

p9

9

p10

10
p11

11

p12

12

p13

13

p14

14

p15

15

p16

16

p17

17

p18

18
p19

19

p20

20

p21

21

p22

22

p23

23

p24

24

p25

25
p26

26

p27

27

p28

28

p29

29

p30

30

p31

31

Figure 6: The simple antimonotone binary linking scheme,
highlighting certificate_pool(9), which consists of the paths
from the next vertebra to p9, from p9 to the previous vertebra,
and from the previous vertebra to p1.

Observe the recursive structure of Gls2: the graph of the first
t+1 generations consist of two copies of the graph of the first
t generations — with the outgoing edges of the spine of the
copy being replaced with edges to the (original) vertebra of
generation t — and a new vertebra p2(t+1)+1−1. This recursive
structure enables convenient inductive reasoning based on the
generation of a vertex.

Further observe that every vertex is either a vertebra vertex
for some generation t, or a (transitive) copy of a vertebra
vertex for some generation t. In both cases, we say that the
vertex is of order t.

For n of generation t, the shortest path from the vertebra
of t to the vertebra of t − 1 via pn is of maximal size if pn
is of order 0. The path consists of vertices of decrementing
order from the vertebra of t to pn, followed by vertices of
incrementing order up to the vertebra of t −1. Consequently,
all order 0 vertices of the same generation yield certficate
pools of the same size: 2t −1. A proper proof would perform
induction on t: removing the vertebrae of t and t −1 from the
path yields a path isomorphic to that of n−2t −1, which is
of generation t −1.

The out-neighborhood of this path has at least the same size,
because every pn has an edge to n. More tricky are the edges
to other pm; we need to count the number of such edges that
lead outside the path. The edges corresponding to f2 never
do so, this would immediately contradict antimonotonicity. It
remains to consider the edges of the form (pn, pn−1).

For vertices of generation at most 2, all these edges are part
of the path. For vertices of any other generation t +1, there
are t −2 such edges leading outside the path, as can be seen
inductively: if the successor of vertex p2t−3 on the path is
not its numeric predecessor, the number of predecessor edges
outside the path increases by one compared to the path for
the previous generation. If the successor of vertex p2t−3 on
the path is its numeric predecessor, then p f2(2t−3) is part of
the path but its predecessor is not, again contributing exactly
one additional edge to a path of the previous generation (see

8

fig. 7).
For the full positional certificate of n of generation t, it re-

mains to add the size of the out-neighborhood of the shortest
path from the vertebra of t − 1 to p1. This path has t ver-
tices, each contributing two vertices to the out-neighborhood
(pm−1 and m), except for p1, which has only a single out-
neighbor. Adding everything up (and accounting for the
double-counting of pt−1) yields the positional certificate size
of (5 · ⌊log2(n)⌋−3) · k, where k is the size of an individual
hash.

The shortest path from pn to p1 is of logarithmic size and
it can serve as a digest pool (in fact, antimonotonicity implies
that this shortest path is a digest pool for every antimonotone
scheme). The observation that the graph has no edge which
jumps over any vertebra can be used to further shrink the
digest pool to the shortest path from pn to the vertebra of the
previous generation.

The optimal antimonotone binary linking scheme [5] ex-
tends the linear scheme with a slightly different, antimono-
tone function f3(n), to obtain the graph Gls3 := (Vlin,Elin ∪
{(pn, p(n)) : n ∈ N≥2}) (fig. 8):

f3(n) :=

{
n− (3k−1 +1) if n = 3k−1

2 ,k ∈N
n− (3h(n)−1

2 +1) otherwise

h(n) :=

{
k if n = 3k−1

2 ,k ∈N
h(n− 3k−1−1

2) if 3k−1−1
2 < n < 3k−1

2 ,k ∈N

Certificate pools (and their analysis) take the same shape as
those of the simple antimonotone scheme, but with different
generations and vertebra: the generation of n in the optimal
scheme is ⌊log3(2n)⌋, the vertebra of generation t is 3t+1−1

2 .
For n of generation t, inductive arguments analogous to to

those of the simple antimonotone scheme yield a maximal size
of 3t + 1 for the path from the vertebra of t to the vertebra
of t − 1 via pn, and 2t − 3 additional vertices for the out-
neighborhood. The shortest path from the vertebra of t − 1
to p1 contributes another 2t − 1 vertices to the positional
certificate, yielding the total size of (7 · ⌊log3(2n)⌋− 4) · k
(again accounting for the double-counting of pt−1). This is
more efficient than the simple antimonotone scheme; for all
n ≥ 128 we have (7 · ⌊log3(2n)⌋−4) ·k < (5 · ⌊log2(n)⌋−3) ·
k.

The shortest path from pn to the vertebra of the previous
generation can again serve as a digest pool. In the optimal
antimonotone scheme, this path contains redundancies how-
ever. For example, consider p24 in fig. 8: none of the labels
of p23, p22, or p17 are directly involved in the computation
of the label of any greater vertex. For the digest pool of n, it
suffices to take the pm with maximal m of each order (with
m ≤ n and for a maximal order of the generation of n).

We would like to point the interested reader to the ele-
gant characterization of all antimonotone binary graphs [5]
that forms the basis of the optimality proof for the opti-
mal antimonotone scheme amongst all antimonotone binary
schemes in the setting of prefix authentication for strings
of bounded length. All antimonotone binary graphs can
be constructed from a graph product operation ⊗, starting
from the trivial graph G1. The antimotone product is an ef-
ficient way of thinking about the antimonotone schemes;
the rather intimidating functions of natural numbers to de-
scribe the two schemes we presented turn into neat, immedi-
ately related one-liners: Gi+1

simple := Gi
simple⊗Gi

simple⊗G1 and
Gi+1

opt := Gi
opt ⊗Gi

opt ⊗Gi
opt ⊗G1.

6.4 Merkle Trees
Whereas the schemes we considered so far are extensions of
Glin, the remaining schemes utilize Merkle trees. To unify
their presentation, we first define the infinite Merkle tree Gtree
on which they build (fig. 9) in isolation:

Vtree :=
{
(n,k) : n ∈N,k ∈N0 and 2k | n

}
,

Etree :=
{(

(n0,k+1),(n1,k)
)

: n0 = n1 or n0 = n1 +2k
}

∪
{(

(i,0), i
)

: i ∈N
}
,

Gtree := (Vtree,Etree).

We can unify parts of the complexity analysis of the re-
maining schemes by analyzing Gtree. We first define the
forest that corresponds to the first n numbers: Gtree[n] :=
Gtree[Vtree

≤n ∪ {(i,k) : i ≤ n}]. Gtree[n] has at most 3n ver-
tices for every n, but Gtree[n]−Gtree[n−1] can have up to
⌈log2(n)⌉ vertices. Unlike the schemes we have seen so far,
all schemes based on Gtree thus require a non-constant amount
of information for a single sequence item in the worst case.

We further define next_root(n) := (2⌈log2(n)⌉,⌈log2(n)⌉),
the root of the smallest complete subtree to contain both 1
and n, and next_power(n) := (2⌈log2(n)⌉,0).

The complexity analysis of several schemes depends on the
number of roots in Gtree[n]. Observe that the number of leaves
of every tree in Gtree[n] is a power of two, and observe further
that the trees in Gtree[n] all have different, strictly decreasing
sizes. Every power of two less than n occurs either once or not
at all. In other words, the trees of Gtree[n] correspond directly
to the binary representation of n.

6.5 Threaded Authentication Trees
We now turn to the first construction to use Merkle trees, the
threaded authentication trees [8]. Threaded authentication
trees start from Gtree and then add edges from every (n,0) to
the roots of the trees of Gtree[n], yielding a linking scheme

9

p1

1

p2

2

p3

3
p4

4

p5

5

p6

6

p7

7

p8

8

p9

9

p10

10
p11

11

p12

12

p13

13

p14

14

p15

15

p16

16

p17

17

p18

18
p19

19

p20

20

p21

21

p22

22

p23

23

p24

24

p25

25
p26

26

p27

27

p28

28

p29

29

p30

30

p31

31

p13

p1

1

p2

2

p3

3
p4

4

p5

5

p6

6

p7

7

p8

8

p9

9

p10

10
p11

11

p12

12

p13

13

p14

14

p15

15

p16

16

p17

17

p18

18
p19

19

p20

20

p21

21

p22

22

p23

23

p24

24

p25

25
p26

26

p27

27

p28

28

p29

29

p30

30

p31

31

p13

Figure 7: Visualizing the inductive step in counting the number of predecessor edges outside the certificate pool. Whether n of
generation t is greater than or equal to 2t +2t−1 −1 (i.e., the numeric predecessor of p2t−3 is part of the certificate pool) or not, a
single edge more leads outside the certificate pool than for a number of generation t −1. The graphic shows the concrete case of
t := 3 with n := 12 on the left and n := 9 right. The crucial vertex is p13.

p1

1

p2

2

p3

3

p4

4
p5

5

p6

6

p7

7

p8

8
p9

9

p10

10

p11

11

p12

12

p13

13

p14

14

p15

15

p16

16

p17

17
p18

18

p19

19

p20

20

p21

21
p22

22

p23

23

p24

24

p25

25

p26

26

p27

27

p28

28

p29

29

p30

30
p31

31

p32

32

p33

33

p34

34
p35

35

p36

36

p37

37

p38

38

p39

39

p40

40

p41

41

p44

44

p50

50

p67

67

p121

121

p42

42

Figure 8: The optimal antimonotone binary linking scheme, highlighting certificate_pool(19), which consists of the paths from
the next vertebra to p19, from p19 to the previous vertebra, and from the previous vertebra to p1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0) (7, 0) (8, 0) (9, 0) (10, 0) (11, 0) (12, 0) (13, 0) (14, 0) (15, 0) (16, 0)

(2, 1) (4, 1) (6, 1) (8, 1) (10, 1) (12, 1) (14, 1) (16, 1)

(4, 2) (8, 2) (12, 2) (16, 2)

(8, 3) (16, 3)

(16, 4)

Figure 9: The start of the infinite Merkle tree Gtree.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0) (7, 0) (8, 0) (9, 0) (10, 0) (11, 0) (12, 0) (13, 0) (14, 0) (15, 0) (16, 0)

(2, 1) (4, 1) (6, 1) (8, 1) (10, 1) (12, 1) (14, 1) (16, 1)

(4, 2) (8, 2) (12, 2) (16, 2)

(8, 3) (16, 3)

(16, 4)

Figure 10: A threaded authentication tree, highlight-
ing certificate_pool(6), which consists of the paths from
next_root(6) to (6,0) and from next_root(6) to (1,0), and
its out-neighborhood.

with digest_vertex(n) := (n,0). The certificate pool of n is
the union of the shortest path from next_root(n) to (n,0) and
the shortest path from next_root(n) to (1,0). See fig. 10 for
an example.

This definition of certificate pools yields positional certifi-
cates of size 2 · ⌈log2(n)⌉ · k, where k is the size of a sin-
gle hash. This is almost twice as much as in the setting

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0) (7, 0) (8, 0) (9, 0) (10, 0) (11, 0) (12, 0) (13, 0) (14, 0) (15, 0) (16, 0)

(2, 1) (4, 1) (6, 1) (8, 1) (10, 1) (12, 1) (14, 1) (16, 1)

(4, 2) (8, 2) (12, 2) (16, 2)

(8, 3) (16, 3)

(16, 4)

d3

d5 d6 d7

d9 d10 d11 d12 d13 d14 d15

Figure 11: A hypercore, highlighting certificate_pool(6),
which consists of the paths from next_root(6) to (6,0) and
from next_root(6) to (1,0), and its out-neighborhood.

with rounds of known size, but it still outperforms the anti-
monotone schemes and is optimal among all schemes we
survey. But unlike the antimonotone schemes, the underlying
graph is of super-linear size, Gtat [n] has O(n log(n)) edges in
the worst case:

Assume that n = 2k. Remember that (i,0) has an outgoing
edge for every 1 in the binary representation of i. The numbers
from 2k−1 to 2k (exclusively) are exactly the n

2 k-bit numbers.
The total number of 1 bits amongst them — that is, the number
of outgoing edges of the vertices (n

2 ,0),(
n
2 +1,0), · · · ,(n−

1,0) — is n
2 ·

k
2 ∈ O(n · k) = O(n log(n)).

As a consequence, checking a prefix certificate for two se-
quences of lengths lenn < lent can take time in O(log(lent) ·
log(log(lent))), despite the size of the certificate being in
O(log(lent)). This is asymptotically slower than checking
certificates for antimonotone schemes. The original presen-
tation of threaded authentication trees focuses on certificate
size only and does not mention this flaw.

As the outgoing edges of any vertex (n,h) go to a root of
a tree in Gtree[n], these roots give a digest pool for n. Since
these roots correspond to binary digits, the size of the digest
pool of n is at most log2(n).

6.6 Hypercore

Whereas threaded authentication trees turn Gtree into a linking
scheme, we now turn to approaches that turn Gtree into more
general TPASs. All these approaches share the insight that
when Gtree[n] has a single root, that root can serve as a digest
vertex for a sequence of n items. But Gtree has no possible
digest vertices for sequences of any other length.

Hypercore [33] takes a direct approach to augmenting Gtree
so that there is a digest vertex for every n. For every n that is
not a power of two, add a vertex dn with an outgoing edge to
every root of Gtree[n] to obtain Ghyper (fig. 11).

Then define digest_vertex(n) as dn, or the root of Gtree[n] if

n is a power of two. commit(n) is then simply the set of roots
of Ghyper[n], a set which label-determines digest_vertex(n)
by construction. Using these definitions of digest_vertex
and commit leaves exactly one valid choice for defin-
ing certificate_vertices(lens, lent): the unique family of
paths that start in digest_vertex(lent) and end “just before”
commit(lent).

The certificate pool of n consists of the union of the path
from next_root(n) to (n,0) and the path from next_root(n)
to (1,0), just like with threaded authentication trees. Despite
the different underlying graphs, the out-neighborhoods (and
hence the sizes of positional certificates) are identical for
threaded authentication trees and hypercores.

To see why the two paths yield valid certificate pools for
hypercores, first observe that the out-neighborhood of the
path from digest_vertex(n) to (n,0) is a subset of the out-
neighborhood of the path from next_root(n) to (n,0).

Now consider any two numbers lens < lent . If
next_root(lens) ̸= next_root(lent), then the path from
next_root(lent) to (1,0) contains next_root(lens). And
the out-neighborhood of the path from next_root(lens) to
(lens,0) contains commit(lens), so together they contain
certificate_vertices(lens, lent).

In the other case of next_root(lens) = next_root(lent),
both lens and lent lie in the complete subtree that contains
the leaves 2⌈log2(lens)⌉−1 + 1 to 2⌈log2(lens)⌉. This tree is iso-
morphic to the tree with the first 2⌈log2(lens)⌉−1 leaves, so
certificate_pool(lens, lent) is a valid certificate pool exactly
if certificate_pool(lens −2⌈log2(lens)⌉−1, lent −2⌈log2(lens)⌉−1)
is a valid certificate pool. Hence, validity follows by induction
— the base case is lens = 1 and lent = 2, for which the union
of the certificate paths does contain certificate_vertices(1,2).

The roots of Ghyper[n] are a digest pool for n; The labels of
the roots of Ghyper[n+1] can be computed from the labels of
the roots of Ghyper[n] together with sequence item n+1.

Like threaded authentication trees, hypercores are of super-
linear size: Ghyper[n] has O(n · log(n)) edges. But the number
of edges within a prefix certificate is linear in the size of the
certificate, so certificate validation lies in O(log(n)).

Still, the super-linear size means that creating a sequence
of length n step-by-step takes O(n log(n)) time, whereas the
antimonotone schemes only need O(n) time. Furthermore,
hypercores have identifiers of up to logarithmic size, unlike
the constant-sized identifiers of antimonotone schemes or
threaded authentication trees.

6.7 Transparency Logs
The transparency log construction [20] creates digest vertices
for every n by iteratively adding a parent vertex to the roots
of the two smallest trees in Gtree[n] until there is a single root
(fig. 12). This root then serves as the digest of n.

Notice that contracting the newly created vertices for the
same n yields exactly the underlying graph of the hypercore

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0) (7, 0) (8, 0) (9, 0) (10, 0) (11, 0) (12, 0) (13, 0) (14, 0) (15, 0) (16, 0)

(2, 1) (4, 1) (6, 1) (8, 1) (10, 1) (12, 1) (14, 1) (16, 1)

(4, 2) (8, 2) (12, 2) (16, 2)

(8, 3) (16, 3)

(16, 4)

(3, 1)

(5, 2)
(6, 2)

(7, 1)

(7, 2)
(9, 1) (10, 1) (11, 1) (12, 1) (13, 1) (14, 1) (15, 1)

Figure 12: A certificate transparency log, highlighting
certificate_pool(6), which consists of the paths from
next_root(6) to (6,0) and from next_root(6) to (1,0), and
its out-neighborhood.

scheme. The certificate transparency scheme is ultimately a
deterministic (but essentially arbitrary) way of subdividing
the digest vertices of hypercore until every vertex has at most
two outgoing edges. Consequently, commit(n) is identical to
that of hypercore, and certificate_vertices(lens, lent) is again
the unique family of paths that start in digest_vertex(lent)
and end “just before” commit(lent).

Unlike hypercore, vertices in the certificate transparency
scheme have a constant-bounded out-degree (two). The price
is a super-linear number of vertices and the hashing of twice
as many bits during certificate validation as hypercore. Other-
wise, the same complexity analyses apply to both schemes.

In the context of certificate transparency, we want to point
out that identifier sizes can matter outside timestamping. Af-
ter submitting an entry to a certificate transparency log, the
log operator replies3 with the new signed tree head (digest
in our terminology) and an inclusion proof (an identifier in
our terminology). Using a scheme with constant-sized identi-
fiers would be an asymptotic improvement over the certificate
transparency scheme for this operation.

Five years prior to the publication of the certificate trans-
parency scheme, Crosby and Wallach [11] presented a highly
similar scheme: whereas certificate transparency creates the
smallest possible binary trees that contain all trees of Gtree[n],
Crosby and Wallach’s scheme also ensures that the vertices
corresponding to sequence items all have the same height in
the tree.

This makes the resulting graphs slightly larger supergraphs
of the certificate transparency graphs, without any actual ad-
vantages. In hindsight, we can hence recommend to disregard
Crosby and Wallach’s scheme, while still appreciating that
theirs is the first published non-linking scheme to solve prefix
authentication.

3Setting aside CT-specific optimization details such as deliberate merge
delays.

6.8 Summary
Prior presentation of all the schemes we surveyed has focused
exclusively on prefix or positional certificate sizes. From this
limited perspective, threaded authentication trees, hypercores
and certificate transparency logs are equivalent, and antimono-
tone schemes are inferior.

The picture drastically changes when taking into account
the other complexity metrics of prefix authentication schemes.
All three schemes with minimal certificates have a super-
linear total size. Threaded authentication trees have smaller
identifiers than hypercore and transparency logs, but suffer
from super-logarithmic verification times. The scheme of
Blibech and Gabillon [4] does achieve the same certificate
sizes with a linearly-sized underlying graph, but it does not
generalize to the setting of unbounded sequence lengths.

Table 1 summarizes the results of our complexity analyses
of the presented schemes.

7 Conclusion

Generalizing from secure time stamping and logging to prefix
authentication has allowed us to transfer knowledge between
results that have not been connected so far. The class of tran-
sitive prefix authentication schemes serves as a tool to com-
pactly and efficiently present and analyze prior results. The
nuanced analysis shows that no existing approach is strictly
superior to any other. We hope that future system designs will
take into account all complexity criteria of prefix authenti-
cation schemes rather than latching on the first scheme with
sub-linear prefix certificates that they lay eyes upon.

The main questions we leave open are questions of op-
timality. While threaded authentication trees have provably
minimal positional certificates amongst linking schemes in a
timestamping setting with rounds of known length, we did not
transfer the optimality result to the setting of prefix authenti-
cation without rounds. Similarly, we do not know whether the
optimal antimonotone scheme for rounds of bounded length
remains optimal amongst antimonotone schemes for prefix
authentication without rounds.

Another open question is whether the optimal positional
certificate sizes amongst linking schemes are optimal amongst
all transitive prefix authentication schemes.

Our complexity analyses further surface a natural de-
sign challenge: that of finding a transitive prefix authenti-
cation scheme that achieves positional certificates of size
2 · ⌈log2(n)⌉ · k while having an underlying graph of linear
size. Such a scheme would strictly outperform threaded au-
thentication trees, hypercore, and certificate transparency logs.

Finally, we would like to emphasize again some of the limi-
tations of prefix authentication schemes. First, the byzanthine
fault-tolerant distributed “append-only log” does not exist,
as reacting to forks adds more expressivity to the abstract
data type than just an append-operation. And second, “proac-

12

Linear Full Skiplist Simple Antimonotone
Positional Certificate n · k n · k O(log(n)2) · k (5 · ⌊log2(n)⌋−3) · k
Certificate Validation O(certsize) O(certsize2) O(certsize) O(certsize)

Edges Amortized O(n) O(n2) O(n) O(n)
Edges Worst Case O(1) O(n) O(log(n)) O(1)
Vertices Amortized O(n) O(n) O(n) O(n)
Vertices Worst Case O(1) O(1) O(1) O(1)
Identifier Amortized O(1) O(1) O(1) O(1)
Identifier Worst Case O(1) O(1) O(1) O(1)

Digest Pool 1 n ⌊log2(n)⌋ ⌊log2(n)⌋
Optimal Antimonotone Threaded Authentication Hypercore Transparency Log

Position Certificate (7 · ⌊log3(2n)⌋−4) · k 2 · ⌈log2(n)⌉ · k 2 · ⌈log2(n)⌉ · k 2 · ⌈log2(n)⌉ · k
Certificate Validation O(certsize) O(certsize · log(certsize)) O(certsize) O(certsize)

Edges Amortized O(n) O(n · log(n)) O(n · log(n)) O(n · log(n))
Edges Worst Case O(1) O(log(n)) O(log(n)) O(log(n))
Vertices Amortized O(n) O(n) O(n) O(n · log(n))
Vertices Worst Case O(1) O(log(n)) O(log(n)) O(log(n))
Identifier Amortized O(1) O(1) O(1) O(1)
Identifier Worst Case O(1) O(1) O(log(n)) O(log(n))

Digest Pool ⌊log3(2n)⌋ ⌊log2(n)⌋ ⌊log2(n)⌋ ⌊log2(n)⌋

Table 1: Summary of the complexity analyses of all presented schemes. The number of edges and vertices determines how long
it takes to create a sequence of n items. Amortized complexities report the metric for G[n], worst-case complexities report the
metric for G[n]\G[n−1].

tive” fork detection by placing logs onto a blockchain only
shifts the problem to that of detecting forks in the blockchain,
which might remain undetected for just as long as forks in a
log when dealing with an equally powerful adversary (as it is
literally the exact same problem).

The universe is cold and dark when it comes to distributed
systems, but pretending otherwise always does more harm
than good.

References

[1] Mustafa Al-Bassam and Sarah Meiklejohn. Contour:
A practical system for binary transparency. In Data
Privacy Management, Cryptocurrencies and Blockchain
Technology, pages 94–110. Springer, 2018. https://
arxiv.org/pdf/1712.08427.pdf.

[2] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim,
Adrian Perrig, Ralf Sasse, and Pawel Szalachowski.
Arpki: Attack resilient public-key infrastructure. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 382–393,
2014. https://cispa.saarland/group/cremers/
downloads/papers/ccsfp200s-cremersA.pdf.

[3] Dave Bayer, Stuart Haber, and W Scott Stornetta.
Improving the efficiency and reliability of digi-
tal time-stamping. In Sequences Ii, pages 329–
334. Springer, 1993. https://citeseerx.ist.

psu.edu/document?repid=rep1&type=pdf&doi=
fcc58b43fe133e98025bc616fbddd96393ae48c7.

[4] Kaouthar Blibech and Alban Gabillon. A new
timestamping scheme based on skip lists. In Compu-
tational Science and Its Applications-ICCSA 2006:
International Conference, Glasgow, UK, May 8-11,
2006, Proceedings, Part III 6, pages 395–405. Springer,
2006. https://www.researchgate.net/profile/
Alban-Gabillon/publication/221432970_A_
New_Timestamping_Scheme_Based_on_Skip_
Lists/links/0deec52aff664d7605000000/
A-New-Timestamping-Scheme-Based-on-Skip-Lists.
pdf.

[5] Ahto Buldas and Peeter Laud. New linking schemes
for digital time-stamping. In ICISC, volume 98, pages
3–14. Citeseer, 1998. https://citeseerx.ist.
psu.edu/document?repid=rep1&type=pdf&doi=
d3a005fb546ff78abc6ee453af4ee91aa6267c50.

[6] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Elimi-
nating counterevidence with applications to accountable
certificate management. Journal of Computer Security,
10(3):273–296, 2002. https://research.cyber.ee/
~peeter/research/JCS161.pdf.

[7] Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan
Villemson. Time-stamping with binary linking schemes.

13

https://arxiv.org/pdf/1712.08427.pdf
https://arxiv.org/pdf/1712.08427.pdf
https://cispa.saarland/group/cremers/downloads/papers/ccsfp200s-cremersA.pdf
https://cispa.saarland/group/cremers/downloads/papers/ccsfp200s-cremersA.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fcc58b43fe133e98025bc616fbddd96393ae48c7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fcc58b43fe133e98025bc616fbddd96393ae48c7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fcc58b43fe133e98025bc616fbddd96393ae48c7
https://www.researchgate.net/profile/Alban-Gabillon/publication/221432970_A_New_Timestamping_Scheme_Based_on_Skip_Lists/links/0deec52aff664d7605000000/A-New-Timestamping-Scheme-Based-on-Skip-Lists.pdf
https://www.researchgate.net/profile/Alban-Gabillon/publication/221432970_A_New_Timestamping_Scheme_Based_on_Skip_Lists/links/0deec52aff664d7605000000/A-New-Timestamping-Scheme-Based-on-Skip-Lists.pdf
https://www.researchgate.net/profile/Alban-Gabillon/publication/221432970_A_New_Timestamping_Scheme_Based_on_Skip_Lists/links/0deec52aff664d7605000000/A-New-Timestamping-Scheme-Based-on-Skip-Lists.pdf
https://www.researchgate.net/profile/Alban-Gabillon/publication/221432970_A_New_Timestamping_Scheme_Based_on_Skip_Lists/links/0deec52aff664d7605000000/A-New-Timestamping-Scheme-Based-on-Skip-Lists.pdf
https://www.researchgate.net/profile/Alban-Gabillon/publication/221432970_A_New_Timestamping_Scheme_Based_on_Skip_Lists/links/0deec52aff664d7605000000/A-New-Timestamping-Scheme-Based-on-Skip-Lists.pdf
https://www.researchgate.net/profile/Alban-Gabillon/publication/221432970_A_New_Timestamping_Scheme_Based_on_Skip_Lists/links/0deec52aff664d7605000000/A-New-Timestamping-Scheme-Based-on-Skip-Lists.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d3a005fb546ff78abc6ee453af4ee91aa6267c50
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d3a005fb546ff78abc6ee453af4ee91aa6267c50
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d3a005fb546ff78abc6ee453af4ee91aa6267c50
https://research.cyber.ee/~peeter/research/JCS161.pdf
https://research.cyber.ee/~peeter/research/JCS161.pdf

In Annual International Cryptology Conference, pages
486–501. Springer, 1998. https://citeseerx.ist.
psu.edu/document?repid=rep1&type=pdf&doi=
f2390ec334bf99cb3d532bc16e05b6b201ad7115.

[8] Ahto Buldas, Helger Lipmaa, and Berry Schoenmakers.
Optimally efficient accountable time-stamping. In Inter-
national workshop on public key cryptography, pages
293–305. Springer, 2000. https://citeseerx.ist.
psu.edu/document?repid=rep1&type=pdf&doi=
aa47957c6bc0e2c19b39aa644cb6b2e0c1defc83.

[9] Melissa Chase and Sarah Meiklejohn. Trans-
parency overlays and applications. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 168–179,
2016. https://discovery.ucl.ac.uk/id/eprint/
10055892/1/transparency.pdf.

[10] Laurent Chuat, Pawel Szalachowski, Adrian Perrig, Ben
Laurie, and Eran Messeri. Efficient gossip protocols for
verifying the consistency of certificate logs. In 2015
IEEE Conference on Communications and Network
Security (CNS), pages 415–423. IEEE, 2015. https:
//arxiv.org/pdf/1511.01514.pdf.

[11] Scott A Crosby and Dan S Wallach. Ef-
ficient data structures for tamper-evident logging.
In USENIX security symposium, pages 317–334,
2009. https://www.usenix.org/legacy/event/
sec09/tech/full_papers/crosby.pdf.

[12] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard Sturgis, Dan Swinehart,
and Doug Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the sixth an-
nual ACM Symposium on Principles of distributed com-
puting, pages 1–12, 1987. https://dl.acm.org/doi/
pdf/10.1145/41840.41841.

[13] Benjamin Dowling, Felix Günther, Udyani Herath, and
Douglas Stebila. Secure logging schemes and certificate
transparency. In European Symposium on Research
in Computer Security, pages 140–158. Springer, 2016.
https://eprint.iacr.org/2016/452.pdf.

[14] Adam Eijdenberg, Ben Laurie, and Al Cutter. Ver-
ifiable data structures. Google Research, Tech.
Rep, 2015. https://continusec.com/static/
VerifiableDataStructures.pdf.

[15] Sascha Fahl, Sergej Dechand, Henning Perl, Felix Fis-
cher, Jaromir Smrcek, and Matthew Smith. Hey, nsa:
Stay away from my market! future proofing app mar-
kets against powerful attackers. In proceedings of the
2014 ACM SIGSAC conference on computer and com-
munications security, pages 1143–1155, 2014. https:
//teamusec.de/pdf/conf-ccs-FahlDPFSS14.pdf.

[16] Michael T Goodrich and Roberto Tamassia. Efficient au-
thenticated dictionaries with skip lists and commutative
hashing. Technical report, Technical Report, Johns Hop-
kins Information Security Institute, 2000. https://cs.
brown.edu/cgc/stms/papers/hashskip.pdf.

[17] Stuart Haber and W Scott Stornetta. How to time-stamp
a digital document. In Conference on the Theory and
Application of Cryptography, pages 437–455. Springer,
1990. https://link.springer.com/content/pdf/
10.1007/BF00196791.pdf.

[18] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Per-
rig, Collin Jackson, and Virgil Gligor. Accountable
key infrastructure (aki) a proposal for a public-key val-
idation infrastructure. In Proceedings of the 22nd
international conference on World Wide Web, pages
679–690, 2013. https://dl.acm.org/doi/abs/10.
1145/2488388.2488448.

[19] Murat Yasin Kubilay, Mehmet Sabir Kiraz, and Hacı Ali
Mantar. Certledger: A new pki model with certificate
transparency based on blockchain. Computers & Se-
curity, 85:333–352, 2019. https://arxiv.org/pdf/
1806.03914.pdf.

[20] Ben Laurie. Certificate transparency. Communications
of the ACM, 57(10):40–46, 2014. https://dl.acm.
org/doi/fullHtml/10.1145/2659897.

[21] Ben Laurie. Certificate transparency: Public, verifiable,
append-only logs. Queue, 12(8):10–19, 2014. https://
dl.acm.org/doi/pdf/10.1145/2668152.2668154.

[22] Ben Laurie and Emilia Kasper. Revocation transparency.
Google Research, September, 33, 2012. http://www.
links.org/files/RevocationTransparency.pdf.

[23] Ben Laurie, Adam Langley, Emilia Kasper, Eran
Messeri, and Rob Stradling. Certificate Transparency
Version 2.0. RFC 9162, December 2021. https:
//www.rfc-editor.org/info/rfc9162.

[24] Hemi Leibowitz, Haitham Ghalwash, Ewa Syta, and
Amir Herzberg. Ctng: Secure certificate and revocation
transparency. Cryptology ePrint Archive, 2021. https:
//eprint.iacr.org/2021/818.pdf.

[25] Jinyuan Li, Maxwell N Krohn, David Mazieres, and
Dennis E Shasha. Secure untrusted data repos-
itory (sundr). In Osdi, volume 4, pages 9–9,
2004. https://www.usenix.org/legacy/event/
osdi04/tech/full_papers/li_j/li_j.pdf.

[26] DSV Madala, Mahabir Prasad Jhanwar, and Anu-
pam Chattopadhyay. Certificate transparency using
blockchain. In 2018 IEEE International Conference on
Data Mining Workshops (ICDMW), pages 71–80. IEEE,
2018. https://eprint.iacr.org/2018/1232.pdf.

14

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f2390ec334bf99cb3d532bc16e05b6b201ad7115
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f2390ec334bf99cb3d532bc16e05b6b201ad7115
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f2390ec334bf99cb3d532bc16e05b6b201ad7115
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=aa47957c6bc0e2c19b39aa644cb6b2e0c1defc83
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=aa47957c6bc0e2c19b39aa644cb6b2e0c1defc83
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=aa47957c6bc0e2c19b39aa644cb6b2e0c1defc83
https://discovery.ucl.ac.uk/id/eprint/10055892/1/transparency.pdf
https://discovery.ucl.ac.uk/id/eprint/10055892/1/transparency.pdf
https://arxiv.org/pdf/1511.01514.pdf
https://arxiv.org/pdf/1511.01514.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/crosby.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/crosby.pdf
https://dl.acm.org/doi/pdf/10.1145/41840.41841
https://dl.acm.org/doi/pdf/10.1145/41840.41841
https://eprint.iacr.org/2016/452.pdf
https://continusec.com/static/VerifiableDataStructures.pdf
https://continusec.com/static/VerifiableDataStructures.pdf
https://teamusec.de/pdf/conf-ccs-FahlDPFSS14.pdf
https://teamusec.de/pdf/conf-ccs-FahlDPFSS14.pdf
https://cs.brown.edu/cgc/stms/papers/hashskip.pdf
https://cs.brown.edu/cgc/stms/papers/hashskip.pdf
https://link.springer.com/content/pdf/10.1007/BF00196791.pdf
https://link.springer.com/content/pdf/10.1007/BF00196791.pdf
https://dl.acm.org/doi/abs/10.1145/2488388.2488448
https://dl.acm.org/doi/abs/10.1145/2488388.2488448
https://arxiv.org/pdf/1806.03914.pdf
https://arxiv.org/pdf/1806.03914.pdf
https://dl.acm.org/doi/fullHtml/10.1145/2659897
https://dl.acm.org/doi/fullHtml/10.1145/2659897
https://dl.acm.org/doi/pdf/10.1145/2668152.2668154
https://dl.acm.org/doi/pdf/10.1145/2668152.2668154
http://www.links.org/files/RevocationTransparency.pdf
http://www.links.org/files/RevocationTransparency.pdf
https://www.rfc-editor.org/info/rfc9162
https://www.rfc-editor.org/info/rfc9162
https://eprint.iacr.org/2021/818.pdf
https://eprint.iacr.org/2021/818.pdf
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/li_j/li_j.pdf
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/li_j/li_j.pdf
https://eprint.iacr.org/2018/1232.pdf

[27] Marcela S Melara, Aaron Blankstein, Joseph Bon-
neau, Edward W Felten, and Michael J Freedman.
{CONIKS}: Bringing key transparency to end
users. In 24th USENIX Security Symposium
(USENIX Security 15), pages 383–398, 2015. https:
//www.usenix.org/system/files/conference/
usenixsecurity15/sec15-paper-melara.pdf.

[28] Alfred J Menezes, Paul C Van Oorschot, and
Scott A Vanstone. Handbook of applied
cryptography. CRC press, 2018. http:
//labit501.upct.es/~fburrull/docencia/
SeguridadEnRedes/old/teoria/bibliography/
HandbookOfAppliedCryptography_AMenezes.pdf.

[29] Ralph C Merkle. A certified digital signa-
ture. In Conference on the Theory and Ap-
plication of Cryptology, pages 218–238. Springer,
1989. https://link.springer.com/content/pdf/
10.1007/0-387-34805-0_21.pdf.

[30] Moni Naor and Kobbi Nissim. Certificate revocation
and certificate update. IEEE Journal on selected
areas in communications, 18(4):561–570, 2000.
https://www.usenix.org/legacy/publications/
library/proceedings/sec98/full_papers/
nissim/nissim.pdf.

[31] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp
Jovanovic, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Justin Cappos, and Bryan Ford. {CHAINIAC}:
Proactive {Software-Update} transparency via
collectively signed skipchains and verified builds.
In 26th USENIX Security Symposium (USENIX
Security 17), pages 1271–1287, 2017. https:
//www.usenix.org/system/files/conference/
usenixsecurity17/sec17-nikitin.pdf.

[32] Linus Nordberg, Daniel Kahn Gillmor, and Tom Rit-
ter. Gossiping in CT. Internet-Draft draft-ietf-
trans-gossip-05, Internet Engineering Task Force, Jan-
uary 2018. https://datatracker.ietf.org/doc/
draft-ietf-trans-gossip/05/.

[33] Maxwell Ogden, Karissa McKelvey, Mathias Buus Mad-
sen, et al. Dat — distributed dataset synchronization and
versioning. Open Science Framework, 10, 2017. https:
//terrymarine.com/wp-content/uploads/2017/
07/724d7267d90052778b0530807512474b.pdf.

[34] Charalampos Papamanthou, Roberto Tamassia,
and Nikos Triandopoulos. Authenticated hash
tables. In Proceedings of the 15th ACM confer-
ence on Computer and communications security,
pages 437–448, 2008. https://citeseerx.ist.
psu.edu/document?repid=rep1&type=pdf&doi=
0556a7a0ceec16986a1817333de62149548b95ad.

[35] William Pugh. Skip lists: a probabilistic alterna-
tive to balanced trees. Communications of the ACM,
33(6):668–676, 1990. https://dl.acm.org/doi/
pdf/10.1145/78973.78977.

[36] Tobias Pulls and Roel Peeters. Balloon: A forward-
secure append-only persistent authenticated data struc-
ture. In European Symposium on Research in Com-
puter Security, pages 622–641. Springer, 2015. https:
//eprint.iacr.org/2015/007.pdf.

[37] Tobias Pulls, Roel Peeters, and Karel Wouters. Dis-
tributed privacy-preserving transparency logging. In
Proceedings of the 12th ACM workshop on Work-
shop on privacy in the electronic society, pages 83–
94, 2013. https://www.esat.kuleuven.be/cosic/
publications/article-2373.pdf.

[38] Mark D Ryan. Enhanced certificate transparency and
end-to-end encrypted mail. Cryptology ePrint Archive,
2013. https://eprint.iacr.org/2013/595.pdf.

[39] Bruce Schneier and John Kelsey. Secure audit
logs to support computer forensics. ACM Transac-
tions on Information and System Security (TISSEC),
2(2):159–176, 1999. https://dl.acm.org/doi/pdf/
10.1145/317087.317089.

[40] Abhishek Singh, Binanda Sengupta, and Sushmita Ruj.
Certificate transparency with enhancements and short
proofs. In Information Security and Privacy: 22nd
Australasian Conference, ACISP 2017, Auckland, New
Zealand, July 3–5, 2017, Proceedings, Part II 22, pages
381–389. Springer, 2017. https://arxiv.org/pdf/
1704.04937.pdf.

[41] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolin-
sky, Philipp Jovanovic, Linus Gasser, Nicolas Gailly,
Ismail Khoffi, and Bryan Ford. Keeping authorities"
honest or bust" with decentralized witness cosigning. In
2016 IEEE Symposium on Security and Privacy (SP),
pages 526–545. Ieee, 2016. https://arxiv.org/pdf/
1503.08768.pdf.

[42] Roberto Tamassia. Authenticated data structures.
In European symposium on algorithms, pages 2–5.
Springer, 2003. https://hashingit.com/elements/
research-resources/2003-Tamassia-ADS.pdf.

[43] Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Chris-
tian Tschudin. Secure scuttlebutt: An identity-centric
protocol for subjective and decentralized applications. In
Proceedings of the 6th ACM conference on information-
centric networking, pages 1–11, 2019. https://dl.
acm.org/doi/pdf/10.1145/3357150.3357396.

15

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-melara.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-melara.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-melara.pdf
http://labit501.upct.es/~fburrull/docencia/SeguridadEnRedes/old/teoria/bibliography/HandbookOfAppliedCryptography_AMenezes.pdf
http://labit501.upct.es/~fburrull/docencia/SeguridadEnRedes/old/teoria/bibliography/HandbookOfAppliedCryptography_AMenezes.pdf
http://labit501.upct.es/~fburrull/docencia/SeguridadEnRedes/old/teoria/bibliography/HandbookOfAppliedCryptography_AMenezes.pdf
http://labit501.upct.es/~fburrull/docencia/SeguridadEnRedes/old/teoria/bibliography/HandbookOfAppliedCryptography_AMenezes.pdf
https://link.springer.com/content/pdf/10.1007/0-387-34805-0_21.pdf
https://link.springer.com/content/pdf/10.1007/0-387-34805-0_21.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/nissim/nissim.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/nissim/nissim.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/nissim/nissim.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-nikitin.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-nikitin.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-nikitin.pdf
https://datatracker.ietf.org/doc/draft-ietf-trans-gossip/05/
https://datatracker.ietf.org/doc/draft-ietf-trans-gossip/05/
https://terrymarine.com/wp-content/uploads/2017/07/724d7267d90052778b0530807512474b.pdf
https://terrymarine.com/wp-content/uploads/2017/07/724d7267d90052778b0530807512474b.pdf
https://terrymarine.com/wp-content/uploads/2017/07/724d7267d90052778b0530807512474b.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0556a7a0ceec16986a1817333de62149548b95ad
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0556a7a0ceec16986a1817333de62149548b95ad
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0556a7a0ceec16986a1817333de62149548b95ad
https://dl.acm.org/doi/pdf/10.1145/78973.78977
https://dl.acm.org/doi/pdf/10.1145/78973.78977
https://eprint.iacr.org/2015/007.pdf
https://eprint.iacr.org/2015/007.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2373.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2373.pdf
https://eprint.iacr.org/2013/595.pdf
https://dl.acm.org/doi/pdf/10.1145/317087.317089
https://dl.acm.org/doi/pdf/10.1145/317087.317089
https://arxiv.org/pdf/1704.04937.pdf
https://arxiv.org/pdf/1704.04937.pdf
https://arxiv.org/pdf/1503.08768.pdf
https://arxiv.org/pdf/1503.08768.pdf
https://hashingit.com/elements/research-resources/2003-Tamassia-ADS.pdf
https://hashingit.com/elements/research-resources/2003-Tamassia-ADS.pdf
https://dl.acm.org/doi/pdf/10.1145/3357150.3357396
https://dl.acm.org/doi/pdf/10.1145/3357150.3357396

[44] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopou-
los, Charalampos Papamanthou, Nikos Triandopou-
los, and Srinivas Devadas. Transparency logs via
append-only authenticated dictionaries. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1299–1316,
2019. https://dl.acm.org/doi/pdf/10.1145/
3319535.3345652.

[45] Alin Tomescu and Srinivas Devadas. Catena: Efficient
non-equivocation via bitcoin. In 2017 IEEE Sympo-
sium on Security and Privacy (SP), pages 393–409.
IEEE, 2017. https://dspace.mit.edu/bitstream/
handle/1721.1/137544/catena.pdf?sequence=2.

[46] Ze Wang, Jingqiang Lin, Quanwei Cai, Qiongxiao Wang,
Daren Zha, and Jiwu Jing. Blockchain-based certifi-
cate transparency and revocation transparency. IEEE
Transactions on Dependable and Secure Computing,
2020. https://fc18.ifca.ai/bitcoin/papers/
bitcoin18-final29.pdf.

[47] Douglas Brent West et al. Introduction to graph
theory, volume 2. Prentice hall Upper Saddle
River, 2001. https://faculty.math.illinois.
edu/~west/igt/igtpref.ps.

[48] Jiangshan Yu, Vincent Cheval, and Mark Ryan. Dtki: A
new formalized pki with verifiable trusted parties. The
Computer Journal, 59(11):1695–1713, 2016. https:
//arxiv.org/pdf/1408.1023.pdf.

[49] Aydan R Yumerefendi and Jeffrey S Chase. Strong
accountability for network storage. ACM Transac-
tions on Storage (TOS), 3(3):11–es, 2007. https:
//www.usenix.org/legacy/event/fast07/tech/
full_papers/yumerefendi/yumerefendi.pdf.

16

https://dl.acm.org/doi/pdf/10.1145/3319535.3345652
https://dl.acm.org/doi/pdf/10.1145/3319535.3345652
https://dspace.mit.edu/bitstream/handle/1721.1/137544/catena.pdf?sequence=2
https://dspace.mit.edu/bitstream/handle/1721.1/137544/catena.pdf?sequence=2
https://fc18.ifca.ai/bitcoin/papers/bitcoin18-final29.pdf
https://fc18.ifca.ai/bitcoin/papers/bitcoin18-final29.pdf
https://faculty.math.illinois.edu/~west/igt/igtpref.ps
https://faculty.math.illinois.edu/~west/igt/igtpref.ps
https://arxiv.org/pdf/1408.1023.pdf
https://arxiv.org/pdf/1408.1023.pdf
https://www.usenix.org/legacy/event/fast07/tech/full_papers/yumerefendi/yumerefendi.pdf
https://www.usenix.org/legacy/event/fast07/tech/full_papers/yumerefendi/yumerefendi.pdf
https://www.usenix.org/legacy/event/fast07/tech/full_papers/yumerefendi/yumerefendi.pdf

	Introduction
	Related Work
	Preliminaries
	Prefix Authentication Schemes
	A Class of Solutions
	Linking Schemes
	Transitive Prefix Authentication Schemes
	Efficiency Criteria
	Secure Timestamping

	Prior Schemes
	Trivial Schemes
	Skip List Schemes
	Antimonotone Binary Schemes
	Merkle Trees
	Threaded Authentication Trees
	Hypercore
	Transparency Logs
	Summary

	Conclusion

